19 research outputs found

    Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020

    Get PDF
    Background The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. Methods For this analysis, we constructed burden-weighted dose–response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15–95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. Findings The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15–39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0–0) and 0·603 (0·400–1·00) standard drinks per day, and the NDE varied between 0·002 (0–0) and 1·75 (0·698–4·30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0·114 (0–0·403) to 1·87 (0·500–3·30) standard drinks per day and an NDE that ranged between 0·193 (0–0·900) and 6·94 (3·40–8·30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59·1% (54·3–65·4) were aged 15–39 years and 76·9% (73·0–81·3) were male. Interpretation There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol. Funding Bill & Melinda Gates Foundation

    Effect of surface roughness on the solar photothermal conversion efficiency of spray-coated CuCo2O4 films

    No full text
    Mixed transition metal oxide films are emerging as efficient and inexpensive potential alternatives to multilayer cermet spectrally selective coatings. However, to replace the current standards involving a complex metal–dielectric structure, oxides must be optimized in terms of their electronic structure and mainly their film morphology. In the present work, a simple ultrasonic nebulized spray pyrolysis technique is used to deposit CuCo2O4 films for solar absorber coatings. Their photothermal efficiencies are studied for solar thermal energy harvesting for different film thicknesses obtained by varying the deposition time. The film surface attributes are studied using atomic force microscopy and scanning electron microscopy. The films deposited for 5 and 10 min show relatively high visible absorptance (∼0.79) and relatively low thermal emittance (∼0.1) and thus are promising candidates for spectrally selective coatings. Meanwhile, increasing the deposition time (>10 min) increases the thickness, thereby increasing the solar absorptance. However, this results in an uncontrolled increase in the surface roughness, which affects the spectral selectivity adversely, leading to the films having higher thermal emittance of between 0.1 and ∼0.25. Analysis of the specular reflection contribution shows that this deterioration is governed predominantly by interference effects due to surface attributes. This study is important for the technological applications of spectrally selective coatings and makes a significant quantitative contribution to emphasize the importance of surface morphology in optics
    corecore