7,417 research outputs found

    Concurrent use of two programming tools for heterogeneous supercomputers

    Get PDF
    In this thesis, a demostration of the heterogeneous use of two programming paradigms for heterogeneous computing called Cluster-M and HAsC is presented. Both paradigms can efficiently support heterogeneous networks by preserving a level of abstraction which does not include any architecture mapping details. Furthermore, they are both machine independent and hence are scalable. Unlike, almost all existing heterogeneous orchestration tools which are MIMD based, HAsC is based on the fundamental concepts of SIMD associative computing. HAsC models a heterogeneous network as a coarse grained associative computer and is designed to optimize the execution of problems with large ratios of computations to instructions. Ease of programming and execution speed, not the utilization of idle resources are the primary goals of HAsC On the other hand, Cluster-M is a generic technique that can be applied to both coarse grained as well as fine grained networks. Cluster-M provides an environment for porting various tasks onto the machines in a heterogeneous suite such that resources utilization is maximized and the overall execution time is minimized. An illustration of how these two paradigms can be used together to provide an efficient medium for heterogeneous programming is included. Finally, their scalability is discussed

    Source amplitudes for active exterior cloaking

    Full text link
    The active cloak comprises a discrete set of multipole sources that destructively interfere with an incident time harmonic scalar wave to produce zero total field over a finite spatial region. For a given number of sources and their positions in two dimensions it is shown that the multipole amplitudes can be expressed as infinite sums of the coefficients of the incident wave decomposed into regular Bessel functions. The field generated by the active sources vanishes in the infinite region exterior to a set of circles defined by the relative positions of the sources. The results provide a direct solution to the inverse problem of determining the source amplitudes. They also define a broad class of non-radiating discrete sources.Comment: 21 pages, 17 figure

    Resonant Interactions Between Protons and Oblique Alfv\'en/Ion-Cyclotron Waves

    Full text link
    Resonant interactions between ions and Alfv\'en/ion-cyclotron (A/IC) waves may play an important role in the heating and acceleration of the fast solar wind. Although such interactions have been studied extensively for "parallel" waves, whose wave vectors k{\bf k} are aligned with the background magnetic field B0{\bf B}_0, much less is known about interactions between ions and oblique A/IC waves, for which the angle θ\theta between k{\bf k} and B0{\bf B}_0 is nonzero. In this paper, we present new numerical results on resonant cyclotron interactions between protons and oblique A/IC waves in collisionless low-beta plasmas such as the solar corona. We find that if some mechanism generates oblique high-frequency A/IC waves, then these waves initially modify the proton distribution function in such a way that it becomes unstable to parallel waves. Parallel waves are then amplified to the point that they dominate the wave energy at the large parallel wave numbers at which the waves resonate with the particles. Pitch-angle scattering by these waves then causes the plasma to evolve towards a state in which the proton distribution is constant along a particular set of nested "scattering surfaces" in velocity space, whose shapes have been calculated previously. As the distribution function approaches this state, the imaginary part of the frequency of parallel A/IC waves drops continuously towards zero, but oblique waves continue to undergo cyclotron damping while simultaneously causing protons to diffuse across these kinetic shells to higher energies. We conclude that oblique A/IC waves can be more effective at heating protons than parallel A/IC waves, because for oblique waves the plasma does not relax towards a state in which proton damping of oblique A/IC waves ceases

    Situación actual del secado artificial de madera proveniente del bosque nativo

    Get PDF
    Vásquez, M. Facultad de Ciencias Forestales. Universidad de Talca. Casilla 747, Talca. Chile. Hernández, G. Jefe de Proyectos. División Industrias. Instituto Forestal, Casilla 109C, Concepción. Chile.La reciente promulgación de la Ley Corta de Bosque Nativo ha motivado a varias instituciones a poner especial atención en la importancia que éste puede poseer desde el punto de vista productivo, ambiental y social. El manejo del bosque nativo debería generar una considerable actividad en torno al recurso, habiéndose estimado un área productiva de 5,13 millones de hectáreas dentro de un total de 13,4 millones de hectáreas actualmente existentes. El primer paso hacia la agregación de valor de la madera aserrada proveniente del bosque nativo se centra en el correcto secado, que por provenir de árboles de renovales, bosques jóvenes, pueden incorporar más variables al desafío técnico de secar en un tiempo razonable con una calidad aceptable. La tecnología puede estar disponible, sin embargo la falta de estudio en forma sistemática ha dificultado proporcionar el conocimiento sobre su comportamiento frente al secado y las causas que originan su desclasificación. El presente estudio es una revisión bibliográfica que recopila la información sobre programas de secado, tiempo de secado y defectos del proceso, publicadas en universidades, centros de investigación, organismos estatales y entrevistas con especialistas del área. Los resultados que pretende mostrar son las actuales prácticas del secado en especies nativas como coigue (Nothofagus dombeyi), coigue de Magallanes (Nothofagus betuliodes), raulí (Nothofagus alpina), roble (Nothofagus oblicua), hualo (Nothofagus glauca), lenga (Nothofagus pumilio), tepa (Laurelia philippiana) y canelo (Drymis winteri) y señalar que es necesario seguir ampliando el conocimiento hacia otras especies, como por ejemplo el olivillo (Aextoxicom punctatum) de la región del Maule

    Molecular gas associated with IRAS 10361-5830

    Get PDF
    We analyze the distribution of the molecular gas and the dust in the molecular clump linked to IRAS 10361-5830, located in the environs of the bubble-shaped HII region Gum 31 in the Carina region, with the aim of determining the main parameters of the associated material and investigating the evolutionary state of the young stellar objects identified there. Using the APEX telescope, we mapped the molecular emission in the J=3-2 transition of three CO isotopologues, 12CO, 13CO and C18O, over a 1.5' x 1.5' region around the IRAS position. We also observed the high density tracers CS and HCO+ toward the source. The cold dust distribution was analyzed using submillimeter continuum data at 870 \mu\ obtained with the APEX telescope. Complementary IR and radio data at different wavelengths were used to complete the study of the ISM. The molecular gas distribution reveals a cavity and a shell-like structure of ~ 0.32 pc in radius centered at the position of the IRAS source, with some young stellar objects (YSOs) projected onto the cavity. The total molecular mass in the shell and the mean H2_2 volume density are ~ 40 solar masses and ~(1-2) x 103^3 cm−3^{-3}, respectively. The cold dust counterpart of the molecular shell has been detected in the far-IR at 870 \mu\ and in Herschel data at 350 \mu. Weak extended emission at 24 \mu\ from warm dust is projected onto the cavity, as well as weak radio continuum emission. A comparison of the distribution of cold and warm dust, and molecular and ionized gas allows us to conclude that a compact HII region has developed in the molecular clump, indicating that this is an area of recent massive star formation. Probable exciting sources capable of creating the compact HII region are investigated. The 2MASS source 10380461-5846233 (MSX G286.3773-00.2563) seems to be responsible for the formation of the HII region.Comment: Accepted in A&A. 11 pages, 10 Postscript figure

    The Calcium Triplet metallicity calibration for galactic bulge stars

    Full text link
    We present a new calibration of the Calcium II Triplet equivalent widths versus [Fe/H], constructed upon K giant stars in the Galactic bulge. This calibration will be used to derive iron abundances for the targets of the GIBS survey, and in general it is especially suited for solar and supersolar metallicity giants, typical of external massive galaxies. About 150 bulge K giants were observed with the GIRAFFE spectrograph at VLT, both at resolution R~20,000 and at R~6,000. In the first case, the spectra allowed us to perform direct determination of Fe abundances from several unblended Fe lines, deriving what we call here high resolution [Fe/H] measurements. The low resolution spectra allowed us to measure equivalent widths of the two strongest lines of the near infrared Calcium II triplet at 8542 and 8662 A. By comparing the two measurements we derived a relation between Calcium equivalent widths and [Fe/H] that is linear over the metallicity range probed here, -1<[Fe/H]<+0.7. By adding a small second order correction, based on literature globular cluster data, we derived the unique calibration equation [Fe/H]CaT=−3.150+0.432W′+0.006W′2_{CaT} = -3.150 + 0.432W' + 0.006W'^2, with a rms dispersion of 0.197 dex, valid across the whole metallicity range -2.3<[Fe/H]<+0.7.Comment: Accepted for publication in A&
    • …
    corecore