176 research outputs found

    Single-particle model for a granular ratchet

    Get PDF
    A simple model for a granular ratchet corresponding to a single grain bouncing off a vertically vibrating sawtooth-like base is studied. Depending on the vibration strength, the sawtooth roughness and the restitution coefficient, horizontal transport in both the preferred and unfavoured directions is observed. A phase diagram indicating the regions in parameter space where each of the three possible regimes (no current, normal current, and current reversal) occurs is presented.Comment: 7 pages, 3 figures, submitted to Physica

    Avalanches in the Weakly Driven Frenkel-Kontorova Model

    Full text link
    A damped chain of particles with harmonic nearest-neighbor interactions in a spatially periodic, piecewise harmonic potential (Frenkel-Kontorova model) is studied numerically. One end of the chain is pulled slowly which acts as a weak driving mechanism. The numerical study was performed in the limit of infinitely weak driving. The model exhibits avalanches starting at the pulled end of the chain. The dynamics of the avalanches and their size and strength distributions are studied in detail. The behavior depends on the value of the damping constant. For moderate values a erratic sequence of avalanches of all sizes occurs. The avalanche distributions are power-laws which is a key feature of self-organized criticality (SOC). It will be shown that the system selects a state where perturbations are just able to propagate through the whole system. For strong damping a regular behavior occurs where a sequence of states reappears periodically but shifted by an integer multiple of the period of the external potential. There is a broad transition regime between regular and irregular behavior, which is characterized by multistability between regular and irregular behavior. The avalanches are build up by sound waves and shock waves. Shock waves can turn their direction of propagation, or they can split into two pulses propagating in opposite directions leading to transient spatio-temporal chaos. PACS numbers: 05.70.Ln,05.50.+q,46.10.+zComment: 33 pages (RevTex), 15 Figures (available on request), appears in Phys. Rev.

    Enzymatic removal of cellulose from cotton/polyester fabric blends

    Get PDF
    The production of light-weight polyester fabrics from a polyester/cotton blended fabric, by means of the enzymatic removal of the cellulosic part of the material, was investigated. The removal of cotton from the blended fabric yielded more than 80% of insoluble microfibrillar material by the combined action of high beating effects and cellulase hydrolysis.Other major features of this enzymatic process for converting cotton fibers into microfibrillar material are bath ratio, enzyme dosage and treatment time
    corecore