242 research outputs found
Fibrosarcoma with Typical Features of Postinjection Sarcoma at Site of Microchip Implant in a Dog: Histologic and Immunohistochemical Study
A 9-year-old, male French Bulldog was examined for a subcutaneous mass located at the site of a microchip implant. Cytologic examination of the mass was suggestive of a malignant mesenchymal neoplasm. Histologically, the mass was confirmed as a high-grade infiltrative fibrosarcoma, with multifocal necrosis and peripheral lymphoid aggregates. By immunohistochemistry, the sample was investigated for vimentin, smooth-muscle actin (SMA), CD3, CD79α, and CD18. All the neoplastic cells were positive for vimentin. Scattered cells at the periphery of the lesion were also positive for SMA, highlighting a myofibroblastic phenotype. The lymphoid cells were positive for CD18 and CD3. No aluminum deposits were detected by the aurintricarboxylic acid method. A diagnosis of fibrosarcoma morphologically similar to feline postinjection sarcomas was made. Fibrosarcomas at the site of injections have been reported in dogs and ferrets. Furthermore, neoplastic growth at the site of microchip implant in dog and laboratory rodents has been described
Chromogenic in situ hybridization for the detection of lambda and kappa immunoglobulin light chains as a potential auxiliary diagnostic technique in canine plasmacytomas
The heterogeneous morphologic features of canine plasmacytomas (PCTs) can make their differentiation from other round cell tumors challenging. Immunohistochemistry (IHC) for lambda (\u3bb) and kappa (\u43a) immunoglobulin (Ig) light chains is often equivocal because of high background staining. The chromogenic in situ hybridization (CISH) technique for light chains has shown higher sensitivity compared to IHC in human plasma cell tumors. Therefore, we aimed to validate automated CISH for light chains in canine tissues and to evaluate its diagnostic potential in canine PCTs, in conjunction with routinely used IHC markers. CISH for light chains demonstrated a clear signal in plasma cell populations of canine control tissues (lymph nodes, lymphoplasmacytic inflammation) showing a polyclonal pattern with a prevalence of \u3bb-producing cells. CISH detected monotypic light chain expression in 33 of 53 (62%) PCTs, 31 expressing \u3bb and 2 expressing \u43a. CISH was more sensitive than IHC for \u3bb light chain (58% vs. 47%, respectively) and more easily interpretable given the absence of confounding background staining. The absence of CISH staining for both \u3bb and \u43a in a considerable subset of tumors may be the result of lower light chain production by neoplastic cells. Multiple myeloma oncogene 1 (MUM1) was expressed by all but 2 PCTs (96%), which showed \u3bb expression by CISH and IHC. The identification of poorly differentiated canine PCTs requires the assessment of a panel of IHC markers, with the potential support of CISH for Ig light chains
Global gene expression analysis of Canine cutaneous mast cell tumor: Could molecular profiling be useful for subtype classification and prognostication?
Prognosis and therapeutic management of dogs with cutaneous mast cell tumors (MCTs) depend on clinical stage and histological grade. However, the prognostic value of this latter is still questionable. In the present study, MCT transcriptome was analyzed to identify a set of candidate genes potentially useful for predicting the biological behavior of MCTs. Fifty-one canine MCT biopsies were analyzed. Isolated and purified total RNAs were individually hybridized to the Agilent Canine V2 4x44k DNA microarray. The comparison of reference differentiated and undifferentiated MCT transcriptome revealed a total of 597 differentially expressed genes (147 down-regulated and 450 up-regulated). The functional analysis of this set of genes provided evidence that they were mainly involved in cell cycle, DNA replication, p53 signaling pathway, nucleotide excision repair and pyrimidine metabolism. Class prediction analysis identified 13 transcripts providing the greatest accuracy of class prediction and divided samples into two categories (differentiated and undifferentiated), harboring a different prognosis. The Principal Component Analysis of all samples, made by using the selected 13 markers, confirmed MCT classification. The first three components accounted for 99.924% of the total variance. This molecular classification significantly correlated with survival time (p = 0.0026). Furthermore, among all marker genes, a significant association was found between mRNA expression and MCT-related mortality for FOXM1, GSN, FEN1 and KPNA2 (p<0.05). Finally, marker genes mRNA expression was evaluated in a cohort of 22 independent samples. Data obtained enabled to identify MCT cases with different prognosis. Overall, the molecular characterization of canine MCT transcriptome allowed the identification of a set of 13 transcripts that clearly separated differentiated from undifferentiated MCTs, thus predicting outcome regardless of the histological grade. These results may have clinical relevance and warrant future validation in a prospective study
Prognostic value of pd-l1, pd-1 and cd8a in canine diffuse large b-cell lymphoma detected by rnascope
Immune checkpoints are a set of molecules dysregulated in several human and canine cancers and aberrations of the PD-1/PD-L1 axis are often correlated with a worse prognosis. To gain an insight into the role of immune checkpoints in canine diffuse large B-cell lymphoma (cDLBCL), we investigated PD-L1, PD-1 and CD8A expression by RNAscope. Results were correlated with several clinico-pathological features, including treatment, Ki67 index and outcome. A total of 33 dogs treated with chemotherapy (n = 12) or chemoimmunotherapy with APAVAC (n = 21) were included. PD-L1 signal was diffusely distributed among neoplastic cells, whereas PD-1 and CD8A were localized in tumor infiltrating lymphocytes. However, PD-1 mRNA was also retrieved in tumor cells. An association between PD-L1 and PD-1 scores was identified and a higher risk of relapse and lymphoma-related death was found in dogs treated with chemotherapy alone and dogs with higher PD-L1 and PD-1 scores. The correlation between PD-L1 and PD-1 is in line with the mechanism of immune checkpoints in cancers, where neoplastic cells overexpress PD-L1 that, in turn, binds PD-1 receptors in activated TIL. We also found that Ki67 index was significantly increased in dogs with the highest PD-L1 and PD-1 scores, indirectly suggesting a role in promoting tumor proliferation. Finally, even if the biological consequence of PD-1+ tumor cells is unknown, our findings suggest that PD-1 intrinsic expression in cDLBCL might contribute to tumor growth escaping adaptive immunity
Effect of dietary supplementation with yeast cell wall extracts on performance and gut response in broiler chickens
Background: The dietary supplementation of yeast cell wall extracts (YCW) has been found to reduce pathogenic bacteria load, promote immunoglobulin production, prevent diseases by pro-inflammatory responses, and alter gut microbiota composition. This study evaluated growth and slaughter results, health, gut morphology, immune status and gut transcriptome of 576 male chickens fed two diets, i.e. C (control) or Y (with 250\u2013500 g/t of YCW fractions according to the growth period). At 21 and 42 d the jejunum of 12 chickens per diet were sampled and stained with hematoxylin/eosin for morphometric evaluation, with Alcian-PAS for goblet cells, and antibodies against CD3+ intraepithelial T-cells and CD45+ intraepithelial leukocytes. The jejunum sampled at 42 d were also used for wholetranscriptome
profiling.
Results: Dietary YCW supplementation did not affect final live weight, whereas it decreased feed intake (114 to 111 g/d; P 64 0.10) and improved feed conversion (1.74 to 1.70; P 64 0.01). Regarding the gut, YCW supplementation tended to increase villi height (P = 0.07); it also increased the number of goblet cells and reduced the density of CD45+ cells compared to diet C (P < 0.001). In the gut transcriptome, four genes were expressed more in broilers fed diet Y compared to diet C, i.e. cytochrome P450, family 2, subfamily C, polypeptide 23b (CYP2C23B), tetratricopeptide repeat domain 9 (TTC9), basic helix-loop-helix family member e41 (BHLHE41), and the metalloreductase STEAP4. Only one gene set (HES_PATHWAY) was significantly enriched among the transcripts more expressed in broilers fed diet Y. However, a total of 41 gene sets were significantly over-represented among genes up-regulated in control broilers. Notably, several enriched gene sets are implicated in immune functions and related to NF-\u3baB signaling, apoptosis, and interferon signals.
Conclusions: The dietary YCW supplementation improved broiler growth performance, increased gut glycoconjugate secretion and reduced the inflammatory status together with differences in the gut transcriptome, which can be considered useful to improve animal welfare and health under the challenging conditions of intensive rearing systems in broiler chickens
Fully-resolved simulations of coal particle combustion using a detailed multi-step approach for heterogeneous kinetics
Fully-resolved simulations of the heating, ignition, volatile flame combustion and char conversion of single coal particles in convective gas environments are conducted and compared to experimental data (Molina and Shaddix, 2007). This work extends a previous computational study (Tufano et al., 2016) by adding a significant level of model fidelity and generality, in particular with regard to the particle interior description and hetero-
geneous kinetics. The model considers the elemental analysis of the given coal and interpolates its properties by linear superposition of a set of reference coals. The improved model description alleviates previously made assumptions of single-step pyrolysis, fixed volatile composition and simplified particle interior properties, and it
allows for the consideration of char conversion. The results show that the burning behavior is affected by the oxygen concentration, i.e. for enhanced oxygen levels ignition occurs in a single step, whereas decreasing the oxygen content leads to a two-stage ignition process. Char conversion becomes dominant once the volatiles have been depleted, but also causes noticeable deviations of temperature, released mass, and overall particle con- version during devolatilization already, indicating an overlap of the two stages of coal conversion which are usually considered to be consecutive. The complex pyrolysis model leads to non-monotonous profiles of the combustion quantities which introduce a minor dependency of the ignition delay time on its definition. Regardless of the chosen extraction method, the simulations capture the measured values of very well
Identification of Histopathological Criteria for the Diagnosis of Canine Cutaneous Progressive Angiomatosis
The term angiomatosis is used to denote a group of well-known to poorly characterized
proliferative vascular entities. In animals, cutaneous progressive angiomatosis (CPA) is a disorder
with variable prognosis related to the extension and depth of infiltration of the surrounding tissues
by vessels. CPA may share some microscopical features with other vascular proliferations such as
low-grade well-differentiated capillaritic hemangiosarcoma (HS), making the diagnosis not always
straightforward, especially in small biopsies. The aim of this study is to retrospectively assess the most
common diagnostic microscopical features of CPA in dogs. In this work, 11 histopathological criteria
were analyzed on 31 CPA and 11 primary cutaneous HS in dogs. Features significantly associated with
CPA included: lobular growth, interposition of connective tissue and adnexa between the vascular
proliferation, presence of nerve fibers, and a mixed vascular proliferative component. Absence of
plump/prominent endothelial cells, lack of atypia, and lack of mitoses were also significant factors
differentiating CPA from HS. Additional distinctive findings in CPA, although with no statistical
association to CPA diagnosis, were vascular shunting, absence of necrosis, and endothelial cell piling
up. In conclusion, the combined use of different microscopical clues allowed for the distinction of
CPA from HS and was considered useful for the diagnosis of CPA
Adjuvants and delivery systems in veterinary vaccinology: current state and future developments
Modern adjuvants should induce strong and balanced immune responses, and it is often desirable to induce specific types of immunity. As an example, efficient Th1-immunity-inducing adjuvants are highly in demand. Such adjuvants promote good cell-mediated immunity against subunit vaccines that have low immunogenicity themselves. The development of such adjuvants may take advantage of the increased knowledge of the molecular mechanisms and factors controlling these responses. However, knowledge of such molecular details of immune mechanisms is relatively scarce for species other than humans and laboratory rodents, and in addition, there are special considerations pertaining to the use of adjuvants in veterinary animals, such as production and companion animals. With a focus on veterinary animals, this review highlights a number of approaches being pursued, including cytokines, CpG oligonucleotides, microparticles and liposomes. (Résumé d'auteur
Clinical phenotypes of Parkinson’s disease associate with distinct gut microbiota and metabolome enterotypes
Parkinson’s disease (PD) is a clinically heterogenic disorder characterized by distinct clinical entities. Most studies on motor deficits dichotomize PD into tremor dominant (TD) or non-tremor dominant (non-TD) with akinetic-rigid features (AR). Different pathophysiological mechanisms may affect the onset of motor manifestations. Recent studies have suggested that gut microbes may be involved in PD pathogenesis. The aim of this study was to investigate the gut microbiota and metabolome composition in PD patients in relation to TD and non-TD phenotypes. In order to address this issue, gut microbiota and the metabolome structure of PD patients were determined from faecal samples using 16S next generation sequencing and gas chromatography–mass spectrometry approaches. The results showed a reduction in the relative abundance of Lachnospiraceae, Blautia, Coprococcus, Lachnospira, and an increase in Enterobacteriaceae, Escherichia and Serratia linked to non-TD subtypes. Moreover, the levels of important molecules (i.e., nicotinic acid, cadaverine, glucuronic acid) were altered in relation to the severity of phenotype. We hypothesize that the microbiota/metabolome enterotypes associated to non-TD subtypes may favor the development of gut inflammatory environment and gastrointestinal dysfunctions and therefore a more severe α-synucleinopathy. This study adds important information to PD pathogenesis and emphasizes the potential pathophysiological link between gut microbiota/metabolites and PD motor subtypes
In vitro synergistic anti-prion effect of cholesterol ester modulators in combination with chlorpromazine and quinacrine
Abstract
Our studies on the role of cholesterol in prion infection/replication showed that brains and peripheral cells of sheep susceptible-to or suffering-from Scrapie were characterized by an altered cholesterol homeostasis, and that drugs affecting cholesterol ester pool were endowed with selective anti-prion activity in N2a cell lines infected with the 22L and RML prion strains. In these prion-infected N2a cell lines, we now report increased anti-prion activity of dual-drug combinations consisting of cholesterol ester modulators associated with prion inhibitors. Synergism was obtained with the cholesterol ester modulators everolimus, pioglitazone, progesterone, and verapamil associated with the anti-prion chlorpromazine, and with everolimus and pioglitazone associated with the anti-prion quinacrine. In addition, comparative lipid analyses in prion-infected vs. uninfected N2a cells, demonstrated a derangement of type and distribution of cholesterol ester, free cholesterol, and triglyceride pools in the infected cells. Single-drug treatments differently affected synthesis of the various lipid forms, whereas combined drug treatments appeared to restore a lipid profile similar to that of the untreated-uninfected cells. We conclude that the anti-prion synergistic effects of cholesterol ester modulators associated with the cholesterol-interfering anti-prion drugs chlorpromazine and quinacrine may arise from the ability of combined drugs to re-establish lipid homeostasis in the prion-infected cells. Overall, these data suggest that inhibition of prion replication can be readily potentiated by combinatorial drug treatments and that steps of cholesterol/cholesterol ester metabolism may represent suitable targets
- …