17,745 research outputs found

    Bayesian optimization for the inverse scattering problem in quantum reaction dynamics

    Full text link
    We propose a machine-learning approach based on Bayesian optimization to build global potential energy surfaces (PES) for reactive molecular systems using feedback from quantum scattering calculations. The method is designed to correct for the uncertainties of quantum chemistry calculations and yield potentials that reproduce accurately the reaction probabilities in a wide range of energies. These surfaces are obtained automatically and do not require manual fitting of the {\it ab initio} energies with analytical functions. The PES are built from a small number of {\it ab initio} points by an iterative process that incrementally samples the most relevant parts of the configuration space. Using the dynamical results of previous authors as targets, we show that such feedback loops produce accurate global PES with 30 {\it ab initio} energies for the three-dimensional H + H2_2 →\rightarrow H2_2 + H reaction and 290 {\it ab initio} energies for the six-dimensional OH + H2_2 →\rightarrow H2_2O + H reaction. These surfaces are obtained from 360 scattering calculations for H3_3 and 600 scattering calculations for OH3_3. We also introduce a method that quickly converges to an accurate PES without the {\it a priori} knowledge of the dynamical results. By construction, our method illustrates the lowest number of potential energy points (i.e. the minimum information) required for the non-parametric construction of global PES for quantum reactive scattering calculations.Comment: 9 pages, 8 figure

    On the Estimation of the Surface Elevation of Regular and Irregular Waves Using the Velocity Field of Bubbles

    Get PDF
    This paper describes a new set of experiments focused on estimating time series of the free surface elevation of water (FSEW) from velocities recorded by submerged air bubbles under regular and irregular waves using a low-cost non-intrusive technique. The main purpose is to compute wave heights and periods using time series of velocities recorded at any depth. The velocities were taken from the tracking of a bubble curtain with only one high-speed digital video camera and a bubble generator. These experiments eliminate the need of intrusive instruments while the methodology can also be applied if the free surface is not visible or even if only part of the depth can be recorded. The estimation of the FSEW was successful for regular waves and reasonably accurate for irregular waves. Moreover, the algorithm to reconstruct the FSEW showed better results for larger wave amplitudes

    Self-similar transmission properties of aperiodic Cantor potentials in gapped graphene

    Full text link
    We investigate the transmission properties of quasiperiodic or aperiodic structures based on graphene arranged according to the Cantor sequence. In particular, we have found self-similar behaviour in the transmission spectra, and most importantly, we have calculated the scalability of the spectra. To do this, we implement and propose scaling rules for each one of the fundamental parameters: generation number, height of the barriers and length of the system. With this in mind we have been able to reproduce the reference transmission spectrum, applying the appropriate scaling rule, by means of the scaled transmission spectrum. These scaling rules are valid for both normal and oblique incidence, and as far as we can see the basic ingredients to obtain self-similar characteristics are: relativistic Dirac electrons, a self-similar structure and the non-conservation of the pseudo-spin. This constitutes a reduction of the number of conditions needed to observe self-similarity in graphene-based structures, see D\'iaz-Guerrero et al. [D. S. D\'iaz-Guerrero, L. M. Gaggero-Sager, I. Rodr\'iguez-Vargas, and G. G. Naumis, arXiv:1503.03412v1, 2015]

    Correlation Between Student Collaboration Network Centrality and Academic Performance

    Full text link
    We compute nodal centrality measures on the collaboration networks of students enrolled in three upper-division physics courses, usually taken sequentially, at the Colorado School of Mines. These are complex networks in which links between students indicate assistance with homework. The courses included in the study are intermediate Classical Mechanics, introductory Quantum Mechanics, and intermediate Electromagnetism. By correlating these nodal centrality measures with students' scores on homework and exams, we find four centrality measures that correlate significantly with students' homework scores in all three courses: in-strength, out-strength, closeness centrality, and harmonic centrality. These correlations suggest that students who not only collaborate often, but also collaborate significantly with many different people tend to achieve higher grades. Centrality measures between simultaneous collaboration networks (analytical vs. numerical homework collaboration) composed of the same students also correlate with each other, suggesting that students' collaboration strategies remain relatively stable when presented with homework assignments targeting different skills. Additionally, we correlate centrality measures between collaboration networks from different courses and find that the four centrality measures with the strongest relationship to students' homework scores are also the most stable measures across networks involving different courses. Correlations of centrality measures with exam scores were generally smaller than the correlations with homework scores, though this finding varied across courses.Comment: 10 pages, 4 figures, submitted to Phys. Rev. PE

    Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research

    Get PDF
    The rewetting of dry soils and the thawing of frozen soils are short-term, transitional phenomena in terms of hydrology and the thermodynamics of soil systems. The impact of these short-term phenomena on larger scale ecosystem fluxes is increasingly recognized, and a growing number of studies show that these events affect fluxes of soil gases such as carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), nitrous oxide (N<sub>2</sub>O), ammonia (NH<sub>3</sub>) and nitric oxide (NO). Global climate models predict that future climatic change is likely to alter the frequency and intensity of drying-rewetting events and thawing of frozen soils. These future scenarios highlight the importance of understanding how rewetting and thawing will influence dynamics of these soil gases. This study summarizes findings using a new database containing 338 studies conducted from 1956 to 2011, and highlights open research questions. The database revealed conflicting results following rewetting and thawing in various terrestrial ecosystems and among soil gases, ranging from large increases in fluxes to non-significant changes. Studies reporting lower gas fluxes before rewetting tended to find higher post-rewetting fluxes for CO<sub>2</sub>, N<sub>2</sub>O and NO; in addition, increases in N<sub>2</sub>O flux following thawing were greater in warmer climate regions. We discuss possible mechanisms and controls that regulate flux responses, and recommend that a high temporal resolution of flux measurements is critical to capture rapid changes in gas fluxes after these soil perturbations. Finally, we propose that future studies should investigate the interactions between biological (i.e., microbial community and gas production) and physical (i.e., porosity, diffusivity, dissolution) changes in soil gas fluxes, apply techniques to capture rapid changes (i.e., automated measurements), and explore synergistic experimental and modelling approaches

    Impactos genéticos da introdução de peixes em águas continentais.

    Get PDF
    bitstream/CPAP/56306/1/ADM107.pdfFormato EletrĂ´nico

    Gause's exclusion principle revisited: artificial modified species and competition

    Full text link
    Gause's principle of competition between two species is studied when one of them is sterile. We study the condition for total extinction in the niche, namely, when the sterile population exterminates the native one by an optimal use of resources. A mathematical Lotka-Volterra non linear model of interaction between a native and sterile species is proposed. The condition for total extinction is related to the initial number MoM_{o} of sterile individuals released in the niche. In fact, the existence of a critical sterile-population value McM_{c} is conjectured from numerical analysis and an analytical estimation is found. When spatial diffusion (migration) is considered a critical size territory is found and, for small territory, total extinction exist in any case. This work is motived by the extermination agriculture problem of fruit flies in our region.Comment: 11 pages. Published in Jour.Phys.A Math.Gen. 33, 4877 (2000

    Caracterização fitoquímica de Piper hispidinervum C.DC do banco ativo de germoplasma da Embrapa Acre.

    Get PDF
    Devido a sua importância comercial, o safrol tem sido muito procurado pela indústria, exigindo material genético de Piper hispidinervum que atenda às necessidades comerciais, como teores mínimos de 90%. Para tanto, a caracterização fitoquímica da espécie no Banco Ativo de Germoplasma da Embrapa Acre foi realizada com o intuito de apontar populações com as melhores características de interesse, como rendimento e teor de safrol. A caracterização fitoquímica das 16 populações analisadas apontou valores médios de umidade de 64,68%, rendimento em BLU de 3,72% e teor de safrol de 77,67%. Pelo teste de médias, a população 19 mostrou rendimento significativamente superior, com 5,29% e a população 04, que com teor médio de 94,36% de safrol em biomassa verde, foi significativamente superior. Dessa forma, estas populações são apontadas como potencias para a seleção no programa de melhoramento genético da espécie
    • …
    corecore