17,745 research outputs found
Bayesian optimization for the inverse scattering problem in quantum reaction dynamics
We propose a machine-learning approach based on Bayesian optimization to
build global potential energy surfaces (PES) for reactive molecular systems
using feedback from quantum scattering calculations. The method is designed to
correct for the uncertainties of quantum chemistry calculations and yield
potentials that reproduce accurately the reaction probabilities in a wide range
of energies. These surfaces are obtained automatically and do not require
manual fitting of the {\it ab initio} energies with analytical functions. The
PES are built from a small number of {\it ab initio} points by an iterative
process that incrementally samples the most relevant parts of the configuration
space. Using the dynamical results of previous authors as targets, we show that
such feedback loops produce accurate global PES with 30 {\it ab initio}
energies for the three-dimensional H + H H + H reaction
and 290 {\it ab initio} energies for the six-dimensional OH + H
HO + H reaction. These surfaces are obtained from 360
scattering calculations for H and 600 scattering calculations for OH.
We also introduce a method that quickly converges to an accurate PES without
the {\it a priori} knowledge of the dynamical results. By construction, our
method illustrates the lowest number of potential energy points (i.e. the
minimum information) required for the non-parametric construction of global PES
for quantum reactive scattering calculations.Comment: 9 pages, 8 figure
On the Estimation of the Surface Elevation of Regular and Irregular Waves Using the Velocity Field of Bubbles
This paper describes a new set of experiments focused on estimating time series of the free surface elevation of water (FSEW) from velocities recorded by submerged air bubbles under regular and irregular waves using a low-cost non-intrusive technique. The main purpose is to compute wave heights and periods using time series of velocities recorded at any depth. The velocities were taken from the tracking of a bubble curtain with only one high-speed digital video camera and a bubble generator. These experiments eliminate the need of intrusive instruments while the methodology can also be applied if the free surface is not visible or even if only part of the depth can be recorded. The estimation of the FSEW was successful for regular waves and reasonably accurate for irregular waves. Moreover, the algorithm to reconstruct the FSEW showed better results for larger wave amplitudes
Recommended from our members
Lava flow morphology at an erupting andesitic stratovolcano: a satellite perspective on El Reventador, Ecuador
Lava flows pose a significant hazard to infrastructure and property located close to volcanoes, and understanding how flows advance is necessary to manage volcanic hazard during eruptions. Compared to low-silica basaltic flows, flows of andesite composition are infrequently erupted and so relatively few studies of their characteristics and behaviour exist. We use El Reventador, Ecuador as a target to investigate andesitic lava flow properties during a 4.5 year period of extrusive eruption between February 2012 and August 2016. We use satellite radar to map the dimensions of 43 lava flows and look at variations in their emplacement behaviour over time. We find that flows descend the north and south flanks of El Reventador, and were mostly emplaced during durations shorter than the satellite repeat interval of 24 days.Flows ranged in length from 0.3 to 1.7 km, and the length of these flows decreased over the observation period. We measure a decrease in flow volume with time that is correlated with a long-term exponential decrease in eruption rate, and propose that this behaviour is caused by temporary magma storage in the conduit acting as a melt capacitor between the magma reservoir and the surface. We use the dimensions of the flow levees and widths to estimate the flow yield strengths, which were of the order of 10-100 kPa. We observe that some flows were diverted by topographic obstacles, and compare measurements of decreased channel width and increased flow thickness at the obstacles with observations from laboratory experiments. Radar observations, such as those presented here, could be used to map and measure properties of evolving lava flow fields at other remote or difficult to monitor volcanoes
Self-similar transmission properties of aperiodic Cantor potentials in gapped graphene
We investigate the transmission properties of quasiperiodic or aperiodic
structures based on graphene arranged according to the Cantor sequence. In
particular, we have found self-similar behaviour in the transmission spectra,
and most importantly, we have calculated the scalability of the spectra. To do
this, we implement and propose scaling rules for each one of the fundamental
parameters: generation number, height of the barriers and length of the system.
With this in mind we have been able to reproduce the reference transmission
spectrum, applying the appropriate scaling rule, by means of the scaled
transmission spectrum. These scaling rules are valid for both normal and
oblique incidence, and as far as we can see the basic ingredients to obtain
self-similar characteristics are: relativistic Dirac electrons, a self-similar
structure and the non-conservation of the pseudo-spin. This constitutes a
reduction of the number of conditions needed to observe self-similarity in
graphene-based structures, see D\'iaz-Guerrero et al. [D. S. D\'iaz-Guerrero,
L. M. Gaggero-Sager, I. Rodr\'iguez-Vargas, and G. G. Naumis,
arXiv:1503.03412v1, 2015]
Correlation Between Student Collaboration Network Centrality and Academic Performance
We compute nodal centrality measures on the collaboration networks of
students enrolled in three upper-division physics courses, usually taken
sequentially, at the Colorado School of Mines. These are complex networks in
which links between students indicate assistance with homework. The courses
included in the study are intermediate Classical Mechanics, introductory
Quantum Mechanics, and intermediate Electromagnetism. By correlating these
nodal centrality measures with students' scores on homework and exams, we find
four centrality measures that correlate significantly with students' homework
scores in all three courses: in-strength, out-strength, closeness centrality,
and harmonic centrality. These correlations suggest that students who not only
collaborate often, but also collaborate significantly with many different
people tend to achieve higher grades. Centrality measures between simultaneous
collaboration networks (analytical vs. numerical homework collaboration)
composed of the same students also correlate with each other, suggesting that
students' collaboration strategies remain relatively stable when presented with
homework assignments targeting different skills. Additionally, we correlate
centrality measures between collaboration networks from different courses and
find that the four centrality measures with the strongest relationship to
students' homework scores are also the most stable measures across networks
involving different courses. Correlations of centrality measures with exam
scores were generally smaller than the correlations with homework scores,
though this finding varied across courses.Comment: 10 pages, 4 figures, submitted to Phys. Rev. PE
Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research
The rewetting of dry soils and the thawing of frozen soils are short-term, transitional phenomena in terms of hydrology and the thermodynamics of soil systems. The impact of these short-term phenomena on larger scale ecosystem fluxes is increasingly recognized, and a growing number of studies show that these events affect fluxes of soil gases such as carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), nitrous oxide (N<sub>2</sub>O), ammonia (NH<sub>3</sub>) and nitric oxide (NO). Global climate models predict that future climatic change is likely to alter the frequency and intensity of drying-rewetting events and thawing of frozen soils. These future scenarios highlight the importance of understanding how rewetting and thawing will influence dynamics of these soil gases. This study summarizes findings using a new database containing 338 studies conducted from 1956 to 2011, and highlights open research questions. The database revealed conflicting results following rewetting and thawing in various terrestrial ecosystems and among soil gases, ranging from large increases in fluxes to non-significant changes. Studies reporting lower gas fluxes before rewetting tended to find higher post-rewetting fluxes for CO<sub>2</sub>, N<sub>2</sub>O and NO; in addition, increases in N<sub>2</sub>O flux following thawing were greater in warmer climate regions. We discuss possible mechanisms and controls that regulate flux responses, and recommend that a high temporal resolution of flux measurements is critical to capture rapid changes in gas fluxes after these soil perturbations. Finally, we propose that future studies should investigate the interactions between biological (i.e., microbial community and gas production) and physical (i.e., porosity, diffusivity, dissolution) changes in soil gas fluxes, apply techniques to capture rapid changes (i.e., automated measurements), and explore synergistic experimental and modelling approaches
Impactos genéticos da introdução de peixes em águas continentais.
bitstream/CPAP/56306/1/ADM107.pdfFormato EletrĂ´nico
Gause's exclusion principle revisited: artificial modified species and competition
Gause's principle of competition between two species is studied when one of
them is sterile. We study the condition for total extinction in the niche,
namely, when the sterile population exterminates the native one by an optimal
use of resources. A mathematical Lotka-Volterra non linear model of interaction
between a native and sterile species is proposed. The condition for total
extinction is related to the initial number of sterile individuals
released in the niche. In fact, the existence of a critical sterile-population
value is conjectured from numerical analysis and an analytical
estimation is found. When spatial diffusion (migration) is considered a
critical size territory is found and, for small territory, total extinction
exist in any case. This work is motived by the extermination agriculture
problem of fruit flies in our region.Comment: 11 pages. Published in Jour.Phys.A Math.Gen. 33, 4877 (2000
Caracterização fitoquĂmica de Piper hispidinervum C.DC do banco ativo de germoplasma da Embrapa Acre.
Devido a sua importância comercial, o safrol tem sido muito procurado pela indĂşstria, exigindo material genĂ©tico de Piper hispidinervum que atenda Ă s necessidades comerciais, como teores mĂnimos de 90%. Para tanto, a caracterização fitoquĂmica da espĂ©cie no Banco Ativo de Germoplasma da Embrapa Acre foi realizada com o intuito de apontar populações com as melhores caracterĂsticas de interesse, como rendimento e teor de safrol. A caracterização fitoquĂmica das 16 populações analisadas apontou valores mĂ©dios de umidade de 64,68%, rendimento em BLU de 3,72% e teor de safrol de 77,67%. Pelo teste de mĂ©dias, a população 19 mostrou rendimento significativamente superior, com 5,29% e a população 04, que com teor mĂ©dio de 94,36% de safrol em biomassa verde, foi significativamente superior. Dessa forma, estas populações sĂŁo apontadas como potencias para a seleção no programa de melhoramento genĂ©tico da espĂ©cie
- …