115 research outputs found

    Measurement of the rate of stellar tidal disruption flares

    Full text link
    We report an observational estimate of the rate of stellar tidal disruption flares (TDFs) in inactive galaxies, based on a successful search for these events among transients in galaxies using archival SDSS multi-epoch imaging data (Stripe 82). This search yielded 186 nuclear flares in galaxies, of which two are excellent TDF candidates. Because of the systematic nature of the search, the very large number of galaxies, the long time of observation, and the fact that non-TDFs were excluded without resorting to assumptions about TDF characteristics, this study provides an unparalleled opportunity to measure the TDF rate. To compute the rate of optical stellar tidal disruption events, we simulate our entire pipeline to obtain the efficiency of detection. The rate depends on the light curves of TDFs, which are presently still poorly constrained. Using only the observed part of the SDSS light curves gives a model-independent upper limit to the optical TDF rate: < 2 10^-4 per year per galaxy (90% CL). We develop three empirical models of the light curves, based on the two SDSS light curves and two more recent and better-sampled Pan-STARRS TDF light curves, leading to our best-estimate of the rate: (1.5 - 2.0)_{-1.3}^{+2.7} 10^-5 per year per galaxy. We explore the modeling uncertainties by considering two theoretically motivated light curve models, as well as two different relationships between black hole mass and galaxy luminosity, and two different treatments of the cutoff in the visibility of TDFs at large black hole mass. From this we conclude that these sources of uncertainty are not significantly larger than the statistical ones. Our results are applicable for galaxies hosting black holes with mass in the range of few million to 10^8 solar masses, and translates to a volumetric TDF rate of (4 - 8) 10^-8 per year per cubic Mpc.Comment: Published in Ap

    Nature and evolution of powerful radio galaxies and their link with the quasar luminosity function

    Full text link
    Current wide-area radio surveys are dominated by active galactic nuclei, yet many of these sources have no identified optical counterparts. Here we investigate whether one can constrain the nature and properties of these sources, using Fanaroff-Riley type II (FRII) radio galaxies as probes. These sources are easy to identify since the angular separation of their lobes remains almost constant at some tens of arcseconds for z>1. Using a simple algorithm applied to the FIRST survey, we obtain the largest FRII sample to date, containing over ten thousand double-lobed sources. A subset of 459 sources is matched to SDSS quasars. This sample yields a statistically meaningful description of the fraction of quasars with lobes as a function of redshift and luminosity. This relation is combined with the bolometric quasar luminosity function, as derived from surveys at IR to hard X-ray frequencies, and a disc-lobe correlation to obtain a robust prediction for the density of FRIIs on the radio sky. We find that the observed density can be explained by the population of known quasars, implying that the majority of powerful jets originate from a radiatively efficient accretion flow with a linear jet-disc coupling. Finally, we show that high-redshift jets are more often quenched within 100 kpc, suggesting a higher efficiency of jet-induced feedback into their host galaxies.Comment: Accepted for publication in MNRA

    The most luminous AGN do not produce the majority of the detected stellar-mass black hole binary mergers in the local Universe

    Full text link
    Despite the increasing number of Gravitational Wave (GW) detections, the astrophysical origin of Binary Black Hole (BBH) mergers remains elusive. A promising formation channel for BBHs is inside accretion discs around supermassive black holes, that power Active Galactic Nuclei (AGN). In this paper, we test for the first time the spatial correlation between observed GW events and AGN. To this end, we assemble all sky catalogues with 1,412 (242) AGN with a bolometric luminosity greater than 1045.5erg s−110^{45.5} {\rm erg\ s}^{-1} (1046 erg s−110^{46}\,{\rm erg\,s}^{-1}) with spectroscopic redshift of z≤0.3z\leq0.3 from the Milliquas catalogue, version 7.7b. These AGN are cross-matched with localisation volumes of BBH mergers observed in the same redshift range by the LIGO and Virgo interferometers during their first three observing runs. We find that the fraction of the detected mergers originated in AGN brighter than 1045.5 erg s−110^{45.5}\,{\rm erg\,s}^{-1} (1046 erg s−110^{46}\,{\rm erg\,s}^{-1}) cannot be higher than 0.490.49 (0.170.17) at a 95 per cent credibility level. Our upper limits imply a limited BBH merger production efficiency of the brightest AGN, while most or all GW events may still come from lower luminosity ones. Alternatively, the AGN formation path for merging stellar-mass BBHs may be actually overall subdominant in the local Universe. To our knowledge, ours are the first observational constraints on the fractional contribution of the AGN channel to the observed BBH mergers.Comment: 11 pages, 5 figures, 2 table

    Sensitive Radio Survey of Obscured Quasar Candidates

    Full text link
    We study the radio properties of moderately obscured quasars over a range of redshifts to understand the role of radio activity in accretion using the Jansky Very Large Array (JVLA) at 6.0GHz and 1.4GHz. Our z~2.5 sample consists of optically-selected obscured quasar candidates, all of which are radio-quiet, with typical radio luminosities of νLν\nu L_{\nu}[1.4 GHz] < 104010^{40} erg s−1^{-1}. Only a single source is individually detected in our deep (rms~10 μ\muJy) exposures. This population would not be identified by radio-based selection methods used for distinguishing dusty star-forming galaxies and obscured active nuclei. In our pilot A-array study of z~0.5 radio-quiet quasars, we spatially resolve four of five objects on scales ~ 5 kpc and find they have steep spectral indices. Therefore, radio emission in these sources could be due to jet-driven or radiatively driven bubbles interacting with interstellar material on the scale of the host galaxy. Finally, we also study the population of ~ 200 faint (~40 μ\muJy - 40 mJy) radio sources observed over ~ 120 arcmin2^2 of our data. 60% of these detections are matched in the SDSS and/or WISE and are, in roughly equal shares, active nuclei at a broad range of redshifts, passive galaxies with no other signs of nuclear activity and IR-bright but optically faint sources. Spectroscopically or photometrically confirmed star-forming galaxies constitute only a small minority of the matches. Such sensitive radio surveys allow us to address important questions of AGN evolution and evaluate the AGN contribution to the radio-quiet sky.Comment: 18 pages, submitted to MNRA

    Radio Properties of Tidal Disruption Events

    Full text link
    Radio observations of tidal disruption events (TDEs) probe material ejected by the disruption of stars by supermassive black holes (SMBHs), uniquely tracing the formation and evolution of jets and outflows, revealing details of the disruption hydrodynamics, and illuminating the environments around previously-dormant SMBHs. To date, observations reveal a surprisingly diverse population. A small fraction of TDEs (at most a few percent) have been observed to produce radio-luminous mildly relativistic jets. The remainder of the population are radio quiet, producing less luminous jets, non-relativistic outflows or, possibly, no radio emission at all. Here, we review the radio observations that have been made of TDEs to date and discuss possible explanations for their properties, focusing on detected sources and, in particular, on the two best-studied events: Sw J1644+57 and ASASSN-14li. We also discuss what we have learned about the host galaxies of TDEs from radio observations and review constraints on the rates of bright and faint radio outflows in TDEs. Upcoming X-ray, optical, near-IR, and radio surveys will greatly expand the sample of TDEs, and technological advances open the exciting possibility of discovering a sample of TDEs in the radio band unbiased by host galaxy extinction.Comment: Resubmitted for publication in Springer Space Science Reviews following referee comments. Chapter in ISSI review "The Tidal Disruption of Stars by Massive Black Holes" vol. 79. Table 2 is available in machine-readable format upon reques
    • …
    corecore