11,287 research outputs found
The role of social interaction in farmers' climate adaptation choice
Adaptation to climate change might not always occur, with potentially\ud
catastrophic results. Success depends on coordinated actions at both\ud
governmental and individual levels (public and private adaptation). Even for a “wet” country like the Netherlands, climate change projections show that the frequency and severity of droughts are likely to increase. Freshwater is an important factor for agricultural production. A deficit causes damage to crop production and consequently to a loss of income. Adaptation is the key to decrease farmers’ vulnerability at the micro level and the sector’s vulnerability at the macro level. Individual adaptation decision-making is determined by the behavior of economic agents and social interaction among them. This can be best studied with agentbased modelling. Given the uncertainty about future weather conditions and the costs and effectiveness of adaptation strategies, a farmer in the model uses a cognitive process (or heuristic) to make adaptation decisions. In this process, he can rely on his experiences and on information from interactions within his social network. Interaction leads to the spread of information and knowledge that causes learning. Learning changes the conditions for individual adaptation decisionmaking. All these interactions cause emergent phenomena: the diffusion of adaptation strategies and a change of drought vulnerability of the agricultural sector. In this paper, we present a conceptual model and the first implementation of an agent-based model. The aim is to study the role of interaction in a farmer’s social network on adaptation decisions and on the diffusion of adaptation strategies\ud
and vulnerability of the agricultural sector. Micro-level survey data will be used to parameterize agents’ behavioral and interaction rules at a later stage. This knowledge is necessary for the successful design of public adaptation strategies, since governmental adaptation actions need to be fine-tuned to private adaptation behavior
OH-selected AGB and post-AGB stellar objects II.Blue versus red evolution off the AGB
Using objects found in a systematic survey of the galactic Plane in the
1612-MHz OH line, we discuss in detail two ``sequences'' of post-AGB evolution,
a red and a blue. We argue that the red and the blue groups separate by initial
mass at 4Msun, based on evolutionary-sequence turn-off colours, spectral energy
distributions, outflow velocities and scaleheight. The higher-mass (blue)
objects may have earlier AGB termination. The lower-mass (red) objects undergo
very sudden reddening for IRAS colour R21\sim1.2; these sources must all
undergo a very similar process at AGB termination. The transition colour
corresponds to average initial masses of 1.7Msun. A combined IRAS-MSX colour
proves a very sensitive tool to distinguish lower-mass, early post-AGB objects
from sources still on the AGB and also to distinguish more evolved post-AGB
objects from star-forming regions. The high-mass blue objects are the likely
precursors of bipolar planetary nebulae, whereas the low-mass red objects will
evolve into elliptical planetary nebulae.Comment: 12 pages, LaTex, 7 figures (1 colour), AJ (accepted
In vivo magnetomyograms of skeletal muscle
Magnetomyography (MMG) is a new noninvasive technique inspired by the magnetoneurographic method of J.P. Wikswo (IEEE Trans. Biomed. Eng., Vol.BME-30, p.215-21, 1983). MMG is used to detect action currents in a muscle, which is immersed in a highly conducting fluid. The detection coil is of a toroidal shape, with the muscle passing through the center of the coil. For a long muscle which fits tightly in the toroid, it is to be expected that magnetic fields correspond almost completely to the intracellular longitudinal (axial) currents in active muscle fibers. An experimental setup with specific coils for rat and mouse skeletal muscles was developed. It is sensitive enough to detect currents from single motor units. The technique can be used to record stimulated twitch activity in live muscle as a function of force level, coil position along the muscle, temperature, etc. By simulating the response with a finite-element forward model, it is possible to calculate action currents under various experimental condition
Valuation of functions of the Wadden Area
The rationale of this position paper is to explore ways to employ valuation methods to assess the impacts of alternative policy decisions on the functions of the Wadden Area. Based on this rationale, this paper aims to bring an ecological-economic perspective on the benefits of the Wadden Area. It highlights key issues involved in the notion and application of monetary valuation methods for valuing the (ecological) functions of the area. It also pays attention to the development of policy handles on the basis of the outcome of the valuation of ecological functions. Particularly, the paper discuss Payment for Environmental Services (PES), which aims at preservation and protection by purchasing conservation. The use of a valuation instrument within a Payment for Environmental Services Scheme is new. Valuation is of course an established technique within a Cost-Benefit framework. However, Payment for Environmental Services is an innovative way of designing policy instruments in the collaboration between ecologists and economist
A homoclinic tangle on the edge of shear turbulence
Experiments and simulations lend mounting evidence for the edge state
hypothesis on subcritical transition to turbulence, which asserts that simple
states of fluid motion mediate between laminar and turbulent shear flow as
their stable manifolds separate the two in state space. In this Letter we
describe a flow homoclinic to a time-periodic edge state. Its existence
explains turbulent bursting through the classical Smale-Birkhoff theorem.
During a burst, vortical structures and the associated energy dissipation are
highly localized near the wall, in contrast to the familiar regeneration cycle
OH-selected AGB and post-AGB objects I.Infrared and maser properties
Using 766 compact objects from a survey of the galactic Plane in the 1612-MHz
OH line, new light is cast on the infrared properties of evolved stars on the
TP-AGB and beyond. The usual mid-infrared selection criteria, based on IRAS
colours, largely fail to distinguish early post-AGB stages. A two-colour
diagram from narrower-band MSX flux densities, with bimodal distributions,
provides a better tool to do the latter. Four mutually consistent selection
criteria for OH-masing red PPNe are given, as well as two for early post-AGB
masers and one for all post--AGB masers, including the earliest ones. All these
criteria miss a group of blue, high-outflow post-AGB sources with 60-mum
excess; these will be discussed in detail in Paper II. The majority of post-AGB
sources show regular double-peaked spectra in the OH 1612-MHz line, with fairly
low outflow velocities, although the fractions of single peaks and irregular
spectra may vary with age and mass. The OH flux density shows a fairly regular
relation with the stellar flux and the envelope optical depth, with the maser
efficiency increasing with IRAS colour R21. The OH flux density is linearly
correlated with the 60-mum flux density.Comment: 16 pages, LaTex, 22 figures, AJ (accepted
Bubble drag reduction requires large bubbles
In the maritime industry, the injection of air bubbles into the turbulent
boundary layer under the ship hull is seen as one of the most promising
techniques to reduce the overall fuel consumption. However, the exact mechanism
behind bubble drag reduction is unknown. Here we show that bubble drag
reduction in turbulent flow dramatically depends on the bubble size. By adding
minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise
completely unchanged strongly turbulent Taylor-Couette flow containing bubbles,
we dramatically reduce the drag reduction from more than 40% to about 4%,
corresponding to the trivial effect of the bubbles on the density and viscosity
of the liquid. The reason for this striking behavior is that the addition of
surfactants prevents bubble coalescence, leading to much smaller bubbles. Our
result demonstrates that bubble deformability is crucial for bubble drag
reduction in turbulent flow and opens the door for an optimization of the
process.Comment: 4 pages, 2 figure
- …