839 research outputs found

    A generalization of bounds for cyclic codes, including the HT and BS bounds

    Full text link
    We use the algebraic structure of cyclic codes and some properties of the discrete Fourier transform to give a reformulation of several classical bounds for the distance of cyclic codes, by extending techniques of linear algebra. We propose a bound, whose computational complexity is polynomial bounded, which is a generalization of the Hartmann-Tzeng bound and the Betti-Sala bound. In the majority of computed cases, our bound is the tightest among all known polynomial-time bounds, including the Roos bound

    Distil the informative essence of loop detector data set: Is network-level traffic forecasting hungry for more data?

    Full text link
    Network-level traffic condition forecasting has been intensively studied for decades. Although prediction accuracy has been continuously improved with emerging deep learning models and ever-expanding traffic data, traffic forecasting still faces many challenges in practice. These challenges include the robustness of data-driven models, the inherent unpredictability of traffic dynamics, and whether further improvement of traffic forecasting requires more sensor data. In this paper, we focus on this latter question and particularly on data from loop detectors. To answer this, we propose an uncertainty-aware traffic forecasting framework to explore how many samples of loop data are truly effective for training forecasting models. Firstly, the model design combines traffic flow theory with graph neural networks, ensuring the robustness of prediction and uncertainty quantification. Secondly, evidential learning is employed to quantify different sources of uncertainty in a single pass. The estimated uncertainty is used to "distil" the essence of the dataset that sufficiently covers the information content. Results from a case study of a highway network around Amsterdam show that, from 2018 to 2021, more than 80\% of the data during daytime can be removed. The remaining 20\% samples have equal prediction power for training models. This result suggests that indeed large traffic datasets can be subdivided into significantly smaller but equally informative datasets. From these findings, we conclude that the proposed methodology proves valuable in evaluating large traffic datasets' true information content. Further extensions, such as extracting smaller, spatially non-redundant datasets, are possible with this method.Comment: 13 pages, 5 figure

    A Data-driven and multi-agent decision support system for time slot management at container terminals: A case study for the Port of Rotterdam

    Full text link
    Controlling the departure time of the trucks from a container hub is important to both the traffic and the logistics systems. This, however, requires an intelligent decision support system that can control and manage truck arrival times at terminal gates. This paper introduces an integrated model that can be used to understand, predict, and control logistics and traffic interactions in the port-hinterland ecosystem. This approach is context-aware and makes use of big historical data to predict system states and apply control policies accordingly, on truck inflow and outflow. The control policies ensure multiple stakeholders satisfaction including those of trucking companies, terminal operators, and road traffic agencies. The proposed method consists of five integrated modules orchestrated to systematically steer truckers toward choosing those time slots that are expected to result in lower gate waiting times and more cost-effective schedules. The simulation is supported by real-world data and shows that significant gains can be obtained in the system

    Pattern retrieval of traffic congestion using graph-based associations of traffic domain-specific features

    Full text link
    The fast-growing amount of traffic data brings many opportunities for revealing more insightful information about traffic dynamics. However, it also demands an effective database management system in which information retrieval is arguably an important feature. The ability to locate similar patterns in big datasets potentially paves the way for further valuable analyses in traffic management. This paper proposes a content-based retrieval system for spatiotemporal patterns of highway traffic congestion. There are two main components in our framework, namely pattern representation and similarity measurement. To effectively interpret retrieval outcomes, the paper proposes a graph-based approach (relation-graph) for the former component, in which fundamental traffic phenomena are encoded as nodes and their spatiotemporal relationships as edges. In the latter component, the similarities between congestion patterns are customizable with various aspects according to user expectations. We evaluated the proposed framework by applying it to a dataset of hundreds of patterns with various complexities (temporally and spatially). The example queries indicate the effectiveness of the proposed method, i.e. the obtained patterns present similar traffic phenomena as in the given examples. In addition, the success of the proposed approach directly derives a new opportunity for semantic retrieval, in which expected patterns are described by adopting the relation-graph notion to associate fundamental traffic phenomena.Comment: 20 pages, 14 figure

    Spatial and Temporal Characteristics of Freight Tours: A Data-Driven Exploratory Analysis

    Full text link
    This paper presents a modeling approach to infer scheduling and routing patterns from digital freight transport activity data for different freight markets. We provide a complete modeling framework including a new discrete-continuous decision tree approach for extracting rules from the freight transport data. We apply these models to collected tour data for the Netherlands to understand departure time patterns and tour strategies, also allowing us to evaluate the effectiveness of the proposed algorithm. We find that spatial and temporal characteristics are important to capture the types of tours and time-of-day patterns of freight activities. Also, the empirical evidence indicates that carriers in most of the transport markets are sensitive to the level of congestion. Many of them adjust the type of tour, departure time, and the number of stops per tour when facing a congested zone. The results can be used by practitioners to get more grip on transport markets and develop freight and traffic management measures

    Online Learning Solutions for Freeway Travel Time Prediction

    Full text link

    Large Car-following Data Based on Lyft level-5 Open Dataset: Following Autonomous Vehicles vs. Human-driven Vehicles

    Full text link
    Car-Following (CF), as a fundamental driving behaviour, has significant influences on the safety and efficiency of traffic flow. Investigating how human drivers react differently when following autonomous vs. human-driven vehicles (HV) is thus critical for mixed traffic flow. Research in this field can be expedited with trajectory datasets collected by Autonomous Vehicles (AVs). However, trajectories collected by AVs are noisy and not readily applicable for studying CF behaviour. This paper extracts and enhances two categories of CF data, HV-following-AV (H-A) and HV-following-HV (H-H), from the open Lyft level-5 dataset. First, CF pairs are selected based on specific rules. Next, the quality of raw data is assessed by anomaly analysis. Then, the raw CF data is corrected and enhanced via motion planning, Kalman filtering, and wavelet denoising. As a result, 29k+ H-A and 42k+ H-H car-following segments are obtained, with a total driving distance of 150k+ km. A diversity assessment shows that the processed data cover complete CF regimes for calibrating CF models. This open and ready-to-use dataset provides the opportunity to investigate the CF behaviours of following AVs vs. HVs from real-world data. It can further facilitate studies on exploring the impact of AVs on mixed urban traffic.Comment: 6 pages, 9 figure

    Cloud-Chamber Observations of Some Unusual Neutral V Particles Having Light Secondaries

    Get PDF
    From six cloud-chamber photographs of unusual V0 decay events, the following conclusions are drawn: (1) there is a neutral V particle that decays into two particles lighter than κ mesons with a Q value too small to be consistent with a θ0(π, π, 214 Mev) particle; (2) some of these events cannot be explained in terms of the decay of a τ0(π0, π-, π+, Q∼80 Mev) particle; (3) these events can be explained by any one of a number of three-body decay schemes, but two different types of V particles must be postulated if two-body decays are assumed

    Sibling Rivalry among Paralogs Promotes Evolution of the Human Brain

    Get PDF
    Geneticists have long sought to identify the genetic changes that made us human, but pinpointing the functionally relevant changes has been challenging. Two papers in this issue suggest that partial duplication of SRGAP2, producing an incomplete protein that antagonizes the original, contributed to human brain evolution
    • …
    corecore