6,864 research outputs found
Towards Dead Time Inclusion in Neuronal Modeling
A mathematical description of the refractoriness period in neuronal diffusion
modeling is given and its moments are explicitly obtained in a form that is
suitable for quantitative evaluations. Then, for the Wiener, Ornstein-Uhlenbeck
and Feller neuronal models, an analysis of the features exhibited by the mean
and variance of the first passage time and of refractoriness period is
performed.Comment: 12 pages, 1 figur
The Quantum Frontier
The success of the abstract model of computation, in terms of bits, logical
operations, programming language constructs, and the like, makes it easy to
forget that computation is a physical process. Our cherished notions of
computation and information are grounded in classical mechanics, but the
physics underlying our world is quantum. In the early 80s researchers began to
ask how computation would change if we adopted a quantum mechanical, instead of
a classical mechanical, view of computation. Slowly, a new picture of
computation arose, one that gave rise to a variety of faster algorithms, novel
cryptographic mechanisms, and alternative methods of communication. Small
quantum information processing devices have been built, and efforts are
underway to build larger ones. Even apart from the existence of these devices,
the quantum view on information processing has provided significant insight
into the nature of computation and information, and a deeper understanding of
the physics of our universe and its connections with computation.
We start by describing aspects of quantum mechanics that are at the heart of
a quantum view of information processing. We give our own idiosyncratic view of
a number of these topics in the hopes of correcting common misconceptions and
highlighting aspects that are often overlooked. A number of the phenomena
described were initially viewed as oddities of quantum mechanics. It was
quantum information processing, first quantum cryptography and then, more
dramatically, quantum computing, that turned the tables and showed that these
oddities could be put to practical effect. It is these application we describe
next. We conclude with a section describing some of the many questions left for
future work, especially the mysteries surrounding where the power of quantum
information ultimately comes from.Comment: Invited book chapter for Computation for Humanity - Information
Technology to Advance Society to be published by CRC Press. Concepts
clarified and style made more uniform in version 2. Many thanks to the
referees for their suggestions for improvement
Are quantization rules for horizon areas universal?
Doubts have been expressed on the universality of holographic/string-inspired
quantization rules for the horizon areas of stationary black holes or the
products of their radii, already in simple 4-dimensional general relativity.
Realistic black holes are not stationary but time-dependent. Using two examples
of 4D general-relativistic spacetimes containing dynamical black holes for at
least part of the time, it is shown that the quantization rules (even counting
virtual horizons) cannot hold, except possibly at isolated instants of time,
and do not seem to be universal.Comment: One example and one figure added, two figures improved, bibliography
expanded and updated. Matches the version accepted for publication in Phys.
Rev.
Scan to BIM for 3D reconstruction of the papal basilica of saint Francis in Assisi In Italy
The historical building heritage, present in the most of Italian cities centres, is, as part of the construction sector, a working potential,
but unfortunately it requires planning of more complex and problematic interventions. However, policies to support on the existing
interventions, together with a growing sensitivity for the recovery of assets, determine the need to implement specific studies and to
analyse the specific problems of each site. The purpose of this paper is to illustrate the methodology and the results obtained from
integrated laser scanning activity in order to have precious architectural information useful not only from the cultural heritage point
of view but also to construct more operative and powerful tools, such as BIM (Building Information Modelling) aimed to the
management of this cultural heritage. The Papal Basilica and the Sacred Convent of Saint Francis in Assisi in Italy are, in fact,
characterized by unique and complex peculiarities, which require a detailed knowledge of the sites themselves to ensure visitor’s
security and safety. For such a project, we have to take in account all the people and personnel normally present in the site, visitors
with disabilities and finally the needs for cultural heritage preservation and protection. This aim can be reached using integrated
systems and new technologies, such as Internet of Everything (IoE), capable of connecting people, things (smart sensors, devices and
actuators; mobile terminals; wearable devices; etc.), data/information/knowledge and processes to reach the desired goals. The IoE
system must implement and support an Integrated Multidisciplinary Model for Security and Safety Management (IMMSSM) for the
specific context, using a multidisciplinary approach
Cosmological implications of an evolutionary quantum gravity
The cosmological implications of an evolutionary quantum gravity are analyzed
in the context of a generic inhomogeneous model. The Schr\"{o}dinger problem is
formulated and solved in the presence of a scalar field, an ultrarelativistic
matter and a perfect gas regarded as the dust-clock. Considering the actual
phenomenology, it is shown how the evolutionary approach overlaps the
Wheeler-DeWitt one.Comment: 4 pages; to appear in the proceedings of the II Stueckelberg
Workshop, Int.J.Mod.Phys.A, references adde
Orofacial muscles activity in children with swallowing dysfunction and removable functional appliances
Swallowing dysfunction is a frequent disorder among children and refers to an altered tongue posture and abnormal tongue movement during swallowing. Removable functional appliance is one of the treatments applied by dentistry to correct this disorder. The aim of this study was to evaluate any differences on orofacial muscles activity in children with swallowing dysfunction with and without removable functional appliances. 68 children were eligible for the study and divided into the orthodontic group (OG) and the no-orthodontic group (NO-OG). Both groups performed a dental occlusion-class evaluation, a swallowing function test and a myoscan analysis in order to measure perioral forces (i.e. tongue extension force, lip pressure, masseter contraction force). Our results showed a significant difference (P=0.02) between OG and NO-OG for the tongue extension force, whereas no significant differences (P>0.05) were found for the other parameters. Our findings suggest that children with swallowing dysfunction and removable functional appliance show orofacial muscles activity within the range of reference values (except for the lip pressure). However, we hypothesize that orthodontic treatment can achieve more effective results with integration of myofunctional therapy
The dynamical environment of asteroid 21 Lutetia according to different internal models
One of the most accurate models currently used to represent the gravity field
of irregular bodies is the polyhedral approach. In this model, the mass of the
body is assumed to be homogeneous, which may not be true for a real object. The
main goal of the present paper is to study the dynamical effects induced by
three different internal structures (uniform, three- and four-layers) of
asteroid (21) Lutetia, an object that recent results from space probe suggest
being at least partially differentiated. The Mascon gravity approach used in
the present work, consists of dividing each tetrahedron into eight parts to
calculate the gravitational field around the asteroid. The zero-velocity curves
show that the greatest displacement of the equilibrium points occurs in the
position of the E4 point for the four-layers structure and the smallest one
occurs in the position of the E3 point for the three-layers structure.
Moreover, stability against impact shows that the planar limit gets slightly
closer to the body with the four-layered structure.
We then investigated the stability of orbital motion in the equatorial plane
of (21) Lutetia and propose numerical stability criteria to map the region of
stable motions. Layered structures could stabilize orbits that were unstable in
the homogeneous model.Comment: 10 pages, 7 figures, and 4 Tables. Accepted for publication in MNRA
A Lemaitre-Tolman-Bondi cosmological wormhole
We present a new analytical solution of the Einstein field equations
describing a wormhole shell of zero thickness joining two
Lema{\i}tre-Tolman-Bondi universes, with no radial accretion. The material on
the shell satisfies the energy conditions and, at late times, the shell becomes
comoving with the dust-dominated cosmic substratum.Comment: 5 pages, latex, no figures, to appear in Phys. Rev.
- …