2,686 research outputs found
Geometrical view of quantum entanglement
Although a precise description of microscopic physical problems requires a
full quantum mechanical treatment, physical quantities are generally discussed
in terms of classical variables. One exception is quantum entanglement which
apparently has no classical counterpart. We demonstrate here how quantum
entanglement may be within the de Broglie-Bohm interpretation of quantum
mechanics visualized in geometrical terms, giving new insight into this
mysterious phenomenon and a language to describe it. On the basis of our
analysis of the dynamics of a pair of qubits, quantum entanglement is linked to
concurrent motion of angular momenta in the Bohmian space of hidden variables
and to the average angle between these momenta
Metastatic Uterine Leiomyosarcoma in the Upper Buccal Gingiva Misdiagnosed as an Epulis
Uterine leiomyosarcoma (LMS) is a rare tumor constituting 1% of all uterine malignancies. This sarcoma demonstrates an aggressive growth pattern with an high rate of recurrence with hematologic dissemination; the most common sites are lung, liver, and peritoneal cavity, head and neck district being rarely interested. Only other four cases of metastasis in the oral cavity have been previously described. The treatment of choice is surgery and the use of adjuvant chemotherapy and radiation has limited impact on clinical outcome. In case of metastases, surgical excision can be performed considering extent of disease, number and type of distant lesions, disease free interval from the initial diagnosis to the time of metastases, and expected life span. We illustrate a case of uterine LMS metastasis in the upper buccal gingiva that occurred during chemotherapy in a 63-year-old woman that underwent a total abdominal hysterectomy with bilateral salpingo-oophorectomy for a diagnosis of LMS staged as pT2bN0 and that developed lung metastases eight months after primary treatment. Surgical excision of the oral mass (previously misdiagnosed as epulis at a dental center) and contemporary reconstruction with pedicled temporalis muscle flap was performed in order to improve quality of life. Even if resection was achieved in free margins, "local" relapse was observed 5 months after surgery
Kelvin-Helmholtz instability at proton scales with an exact kinetic equilibrium
The Kelvin-Helmholtz instability is a ubiquitous physical process in ordinary
fluids and plasmas, frequently observed also in space environments. In this
paper, kinetic effects at proton scales in the nonlinear and turbulent stage of
the Kelvin-Helmholtz instability have been studied in magnetized collisionless
plasmas by means of Hybrid Vlasov-Maxwell simulations. The main goal of this
work is to point out the back reaction on particles triggered by the evolution
of such instability, as energy reaches kinetic scales along the turbulent
cascade. Interestingly, turbulence is inhibited when Kelvin-Helmholtz
instability develops over an initial state which is not an exact equilibrium
state. On the other hand, when an initial equilibrium condition is considered,
energy can be efficiently transferred towards short scales, reaches the typical
proton wavelengths and drives the dynamics of particles. As a consequence of
the interaction of particles with the turbulent fluctuating fields, the proton
velocity distribution deviates significantly from the local thermodynamic
equilibrium, the degree of deviation increasing with the level of turbulence in
the system and being located near regions of strong magnetic stresses. These
numerical results support recent space observations from the Magnetospheric
MultiScale mission of ion kinetic effects driven by the turbulent dynamics at
the Earth's magnetosheath (Perri et al., 2020, JPlPh, 86, 905860108) and by the
Kelvin-Helmholtz instability in the Earth's magnetosphere (Sorriso-Valvo et
al., 2019, PhRvL, 122, 035102).Comment: 14 pages, 11 figure
Undamped electrostatic plasma waves
Electrostatic waves in a collision-free unmagnetized plasma of electrons with
fixed ions are investigated for electron equilibrium velocity distribution
functions that deviate slightly from Maxwellian. Of interest are undamped waves
that are the small amplitude limit of nonlinear excitations, such as electron
acoustic waves (EAWs). A deviation consisting of a small plateau, a region with
zero velocity derivative over a width that is a very small fraction of the
electron thermal speed, is shown to give rise to new undamped modes, which here
are named {\it corner modes}. The presence of the plateau turns off Landau
damping and allows oscillations with phase speeds within the plateau. These
undamped waves are obtained in a wide region of the plane
( being the real part of the wave frequency and the
wavenumber), away from the well-known `thumb curve' for Langmuir waves and EAWs
based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that
corroborate the existence of these modes are described. It is also shown that
deviations caused by fattening the tail of the distribution shift roots off of
the thumb curve toward lower -values and chopping the tail shifts them
toward higher -values. In addition, a rule of thumb is obtained for
assessing how the existence of a plateau shifts roots off of the thumb curve.
Suggestions are made for interpreting experimental observations of
electrostatic waves, such as recent ones in nonneutral plasmas.Comment: 11 pages, 10 figure
On the zig-zag pilot-wave approach for fermions
We consider a pilot-wave approach for the Dirac theory that was recently
proposed by Colin and Wiseman. In this approach, the particles perform a
zig-zag motion, due to stochastic jumps of their velocity. We respectively
discuss the one-particle theory, the many-particle theory and possible
extensions to quantum field theory. We also discuss the non-relativistic limit
of the one-particle theory. For a single particle, the motion is always
luminal, a feature that persists in the non-relativistic limit. For more than
one particle the motion is in general subluminal.Comment: 23 pages, no figures, LaTe
Recent development on the realization of a 1-inch VSiPMT prototype
The VSiPMT (Vacuum Silicon PhotoMultiplier Tube) is an innovative design for a revolutionary hybrid photodetector. The idea, born with the purpose to use a SiPM for large detection volumes, consists in replacing the classical dynode chain with a SiPM. In this configuration, we match the large sensitive area of a photocathode with the performances of the SiPM technology, which therefore acts like an electron detector and so like a current amplifier. The excellent photon counting capability, fast response, low power consumption and great stability are among the most attractive features of the VSiPMT. In order to realize such a device we first studied the feasibility of this detector both from theoretical and experimental point of view, by implementing a Geant4-based simulation and studying the response of a special non-windowed MPPC by Hamamatsu with an electron beam. Thanks to this result Hamamatsu realized two VSiPMT industrial prototypes with a photocathode of 3mm diameter. We present the progress on the realization of a 1-inch prototype and the preliminary tests we are performing on it
- …