190 research outputs found
An adaptive stigmergy-based system for evaluating technological indicator dynamics in the context of smart specialization
Regional innovation is more and more considered an important enabler of
welfare. It is no coincidence that the European Commission has started looking
at regional peculiarities and dynamics, in order to focus Research and
Innovation Strategies for Smart Specialization towards effective investment
policies. In this context, this work aims to support policy makers in the
analysis of innovation-relevant trends. We exploit a European database of the
regional patent application to determine the dynamics of a set of technological
innovation indicators. For this purpose, we design and develop a software
system for assessing unfolding trends in such indicators. In contrast with
conventional knowledge-based design, our approach is biologically-inspired and
based on self-organization of information. This means that a functional
structure, called track, appears and stays spontaneous at runtime when local
dynamism in data occurs. A further prototyping of tracks allows a better
distinction of the critical phenomena during unfolding events, with a better
assessment of the progressing levels. The proposed mechanism works if
structural parameters are correctly tuned for the given historical context.
Determining such correct parameters is not a simple task since different
indicators may have different dynamics. For this purpose, we adopt an
adaptation mechanism based on differential evolution. The study includes the
problem statement and its characterization in the literature, as well as the
proposed solving approach, experimental setting and results.Comment: mail: [email protected]
A stigmergy-based analysis of city hotspots to discover trends and anomalies in urban transportation usage
A key aspect of a sustainable urban transportation system is the
effectiveness of transportation policies. To be effective, a policy has to
consider a broad range of elements, such as pollution emission, traffic flow,
and human mobility. Due to the complexity and variability of these elements in
the urban area, to produce effective policies remains a very challenging task.
With the introduction of the smart city paradigm, a widely available amount of
data can be generated in the urban spaces. Such data can be a fundamental
source of knowledge to improve policies because they can reflect the
sustainability issues underlying the city. In this context, we propose an
approach to exploit urban positioning data based on stigmergy, a bio-inspired
mechanism providing scalar and temporal aggregation of samples. By employing
stigmergy, samples in proximity with each other are aggregated into a
functional structure called trail. The trail summarizes relevant dynamics in
data and allows matching them, providing a measure of their similarity.
Moreover, this mechanism can be specialized to unfold specific dynamics.
Specifically, we identify high-density urban areas (i.e hotspots), analyze
their activity over time, and unfold anomalies. Moreover, by matching activity
patterns, a continuous measure of the dissimilarity with respect to the typical
activity pattern is provided. This measure can be used by policy makers to
evaluate the effect of policies and change them dynamically. As a case study,
we analyze taxi trip data gathered in Manhattan from 2013 to 2015.Comment: Preprin
Stigmergy-based modeling to discover urban activity patterns from positioning data
Positioning data offer a remarkable source of information to analyze crowds
urban dynamics. However, discovering urban activity patterns from the emergent
behavior of crowds involves complex system modeling. An alternative approach is
to adopt computational techniques belonging to the emergent paradigm, which
enables self-organization of data and allows adaptive analysis. Specifically,
our approach is based on stigmergy. By using stigmergy each sample position is
associated with a digital pheromone deposit, which progressively evaporates and
aggregates with other deposits according to their spatiotemporal proximity.
Based on this principle, we exploit positioning data to identify high density
areas (hotspots) and characterize their activity over time. This
characterization allows the comparison of dynamics occurring in different days,
providing a similarity measure exploitable by clustering techniques. Thus, we
cluster days according to their activity behavior, discovering unexpected urban
activity patterns. As a case study, we analyze taxi traces in New York City
during 2015
Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment
In the last decade, integrated logistics has become an important challenge in
the development of wireless communication, identification and sensing
technology, due to the growing complexity of logistics processes and the
increasing demand for adapting systems to new requirements. The advancement of
wireless technology provides a wide range of options for the maritime container
terminals. Electronic devices employed in container terminals reduce the manual
effort, facilitating timely information flow and enhancing control and quality
of service and decision made. In this paper, we examine the technology that can
be used to support integration in harbor's logistics. In the literature, most
systems have been developed to address specific needs of particular harbors,
but a systematic study is missing. The purpose is to provide an overview to the
reader about which technology of integrated logistics can be implemented and
what remains to be addressed in the future
Solving the scalarization issues of Advantage-based Reinforcement Learning algorithms
In this research, some of the issues that arise from the scalarization of the multi-objective optimization problem in the Advantage Actor–Critic (A2C) reinforcement learning algorithm are investigated. The paper shows how a naive scalarization can lead to gradients overlapping. Furthermore, the possibility that the entropy regularization term can be a source of uncontrolled noise is discussed. With respect to the above issues, a technique to avoid gradient overlapping is proposed, while keeping the same loss formulation. Moreover, a method to avoid the uncontrolled noise, by sampling the actions from distributions with a desired minimum entropy, is investigated. Pilot experiments have been carried out to show how the proposed method speeds up the training. The proposed approach can be applied to any Advantage-based Reinforcement Learning algorithm
Formal Derivation of Mesh Neural Networks with Their Forward-Only Gradient Propagation
This paper proposes the Mesh Neural Network (MNN), a novel architecture which allows neurons to be connected in any topology, to efficiently route information. In MNNs, information is propagated between neurons throughout a state transition function. State and error gradients are then directly computed from state updates without backward computation. The MNN architecture and the error propagation schema is formalized and derived in tensor algebra. The proposed computational model can fully supply a gradient descent process, and is potentially suitable for very large scale sparse NNs, due to its expressivity and training efficiency, with respect to NNs based on back-propagation and computational graphs
Optimal joint routing and link scheduling for real-time traffic in TDMA Wireless Mesh Networks
We investigate the problem of joint routing and link scheduling in Time-Division Multiple Access (TDMA) Wireless Mesh Networks (WMNs) carrying real-time traffic. We propose a framework that always computes a feasible solution (i.e. a set of paths and link activations) if there exists one, by optimally solving a mixed integer-non linear problem. Such solution can be computed in minutes or tens thereof for e.g. grids of up to 4x4 nodes. We also propose heuristics based on Lagrangian decomposition to compute suboptimal solutions considerably faster and/or for larger WMNs, up to about 50 nodes. We show that the heuristic solutions are near-optimal, and we exploit them to investigate the optimal placement of one or more gateways from a delay bound perspective
- …