3 research outputs found

    POROUS PLASTIC MATRIX TABLETS OF LEVETIRACETAM FOR ZERO-ORDER CONTROLLED RELEASE: DEVELOPMENT AND FORMULATION OPTIMIZATION

    Get PDF
    Objective: The prior objective of the current research work was to develop once-daily levetiracetam extended/controlled-release tablets having zero-order release kinetics with the plastic matrix as the release retarding element. For a high water-soluble drug, the formulation of a dosage form so as to have an extended drug release has always been a difficult task. Methods: In the current work, levetiracetam which is a highly soluble drug was taken as the model drug for which extended-release matrix tablets were developed using varied plastic polymers like Polyvinyl acetate (PVAc), Polyvinyl chloride (PVC), Eudragit RSPO and Eudragit RLPO. PVP was considered as a pore-forming agent and PEG 6000 was taken as a water regulating agent. The porous plastic matrix tablets were prepared by embedding the drug in solvent-activated polymer dispersion followed by drying, sieving, mixing with other excipients and finally compressed. Including physical characterization studies and drug release studies, the tablets were subjected to SEM studies before and after the dissolution studies to analyze the effect of the pore former. Results: Pre-compression mixtures exhibited good packageability of 81-92% and hence the compressed tablets were strong enough with good tensile strength in the range of 0.78–0.90 N/mm2. Drug release study results showed that the drug release was controlled for a period of 12–24h. PVAc had shown better controlled-release among all the plastic polymers taken. PEG 6000 in combination with PVP produced the desired zero-order drug release. Conclusion: The levetiracetam porous plastic matrix tablets were developed with zero-order drug release that was effectively controlled for 24hr

    Performance, combustion and emission reduction characteristics of Metal-based silicon dioxide nanoparticle additives included in ternary fuel (diesel-SMME-iso butanol) on diesel engine

    No full text
    Biodiesel has long been recognized as a viable alternative energy source. In order to enhance the quality, and performance of biodiesel-diesel fuel blends while reducing air pollution from combustion, additives must be employed. The present research aims to focus on the addition of SiO2 novel nanoparticles (at a concentration of 30, 60, and 90 mg/L) in the ternary fuel (TF) blend (75% of Diesel+ 15% of Sea Mango Methyl Ester (SMME15) + 10% of iso-Butanol on a volume basis) to determine engine performance, combustion, and emission characteristics of a 1-cylinder, direct injection, liquid-cooled, diesel engine. In addition to this, a stability analysis for the prepared samples was also carried out as per the ASTM standard. From the investigation, it was observed that, when the nanoparticles mixed with ternary fuel (i.e., TFSi60), the brake thermal efficiency (BTE), In-cylinder pressure (ICP), and net heat release rate (NHRR) were improved by about 10.09, 17.4, and 10.73 % respectively. Whereas the brake-specific fuel consumption (BSFC) (19.13%) and hazardous pollutants like carbon monoxide (CO) (20.06%), unburnt hydrocarbons (UHC) (13.9%), nitrogen oxides (NOx) (11.3%), and smoke (11.2%) were significantly decreased. From the above observations, it is concluded that using a ternary fuel blend with nano additives improves engine performance and combustion while lowering toxic emissions
    corecore