9 research outputs found
Innate recognition of apoptotic cells:novel apoptotic cell-associated molecular patterns revealed by crossreactivity of anti-LPS antibodies
Cells dying by apoptosis are normally cleared by phagocytes through mechanisms that can suppress inflammation and immunity. Molecules of the innate immune system, the pattern recognition receptors (PRRs), are able to interact not only with conserved structures on microbes (pathogen-associated molecular patterns, PAMPs) but also with ligands displayed by apoptotic cells. We reasoned that PRRs might therefore interact with structures on apoptotic cells-apoptotic cell-associated molecular patterns (ACAMPs)-that are analogous to PAMPs. Here we show that certain monoclonal antibodies raised against the prototypic PAMP, lipopolysaccharide (LPS), can crossreact with apoptotic cells. We demonstrate that one such antibody interacts with a constitutively expressed intracellular protein, laminin-binding protein, which translocates to the cell surface during apoptosis and can interact with cells expressing the prototypic PRR, mCD14 as well as with CD14-negative cells. Anti-LPS cross reactive epitopes on apoptotic cells colocalised with annexin V-and C1q-binding sites on vesicular regions of apoptotic cell surfaces and were released associated with apoptotic cell-derived microvesicles (MVs). These results confirm that apoptotic cells and microbes can interact with the immune system through common elements and suggest that anti-PAMP antibodies could be used strategically to characterise novel ACAMPs associated not only with apoptotic cells but also with derived MVs
The N-terminus of CD14 acts to bind apoptotic cells and confers rapid-tethering capabilities on non-myeloid cells:CD14 and rapid tethering of apoptotic cells
Cell death and removal of cell corpses in a timely manner is a key event in both physiological and pathological situations including tissue homeostasis and the resolution of inflammation. Phagocytic clearance of cells dying by apoptosis is a complex sequential process comprising attraction, recognition, tethering, signalling and ultimately phagocytosis and degradation of cell corpses. A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within this process. The role of myeloid cell CD14 in mediating apoptotic cell interactions with macrophages has long been known though key molecules and residues involved have not been defined. Here we sought to further dissect the function of CD14 in apoptotic cell clearance. A novel panel of THP-1 cell-derived phagocytes was employed to demonstrate that CD14 mediates effective apoptotic cell interactions with macrophages in the absence of detectable TLR4 whilst binding and responsiveness to LPS requires TLR4. Using a targeted series of CD14 point mutants expressed in non-myeloid cells we reveal CD14 residue 11 as key in the binding of apoptotic cells whilst other residues are reported as key for LPS binding. Importantly we note that expression of CD14 in non-myeloid cells confers the ability to bind rapidly to apoptotic cells. Analysis of a panel of epithelial cells reveals that a number naturally express CD14 and that this is competent to mediate apoptotic cell clearance. Taken together these data suggest that CD14 relies on residue 11 for apoptotic cell tethering and it may be an important tethering molecule on so called 'non-professional' phagocytes thus contributing to apoptotic cell clearance in a non-myeloid setting. Furthermore these data establish CD14 as a rapid-acting tethering molecule, expressed in monocytes, which may thus confer responsiveness of circulating monocytes to apoptotic cell derived material. © 2013 Thomas et al