205 research outputs found
Pure-glue hidden valleys through the Higgs portal
We consider the possibility that the Higgs boson can act as a link to a
hidden sector in the context of pure-glue hidden valley models. In these models
the standard model is weakly coupled, through loops of heavy messengers fields,
to a hidden sector whose low energy dynamics is described by a pure-Yang-Mills
theory. Such a hidden sector contains several metastable hidden glueballs. In
this work we shall extend earlier results on hidden valleys to include
couplings of the messengers to the standard model Higgs sector. The effective
interactions at one-loop couple the hidden gluons to the standard model
particles through the Higgs sector. These couplings in turn induce hidden
glueball decays to fermion pairs, or cascade decays with multiple Higgs
emission. The presence of effective operators of different mass dimensions,
often competing with each other, together with a great diversity of states,
leads to a great variability in the lifetimes and decay modes of the hidden
glueballs. We find that most of the operators considered in this paper are not
heavily constrained by precision electroweak physics, therefore leaving plenty
of room in the parameter space to be explored by the future experiments at the
LHC.Comment: 44 pages, 16 figures. Major revision for JHEP, corrected an error in
Eq. 5.1, comments adde
Supersymmetric QCD: Exact Results and Strong Coupling
We revisit two longstanding puzzles in supersymmetric gauge theories. The
first concerns the question of the holomorphy of the coupling, and related to
this the possible definition of an exact (NSVZ) beta function. The second
concerns instantons in pure gluodynamics, which appear to give sensible, exact
results for certain correlation functions, which nonetheless differ from those
obtained using systematic weak coupling expansions. For the first question, we
extend an earlier proposal of Arkani-Hamed and Murayama, showing that if their
regulated action is written suitably, the holomorphy of the couplings is
manifest, and it is easy to determine the renormalization scheme for which the
NSVZ formula holds. This scheme, however, is seen to be one of an infinite
class of schemes, each leading to an exact beta function; the NSVZ scheme,
while simple, is not selected by any compelling physical consideration. For the
second question, we explain why the instanton computation in the pure
supersymmetric gauge theory is not reliable, even at short distances. The
semiclassical expansion about the instanton is purely formal; if infrared
divergences appear, they spoil arguments based on holomorphy. We demonstrate
that infrared divergences do not occur in the perturbation expansion about the
instanton, but explain that there is no reason to think this captures all
contributions from the sector with unit topological charge. That one expects
additional contributions is illustrated by dilute gas corrections. These are
infrared divergent, and so difficult to define, but if non-zero give order one,
holomorphic, corrections to the leading result. Exploiting an earlier analysis
of Davies et al, we demonstrate that in the theory compactified on a circle of
radius beta, due to infrared effects, finite contributions indeed arise which
are not visible in the formal limit that beta goes to infinity.Comment: 28 pages, two references added, one typo correcte
Structures and waves in a nonlinear heat-conducting medium
The paper is an overview of the main contributions of a Bulgarian team of
researchers to the problem of finding the possible structures and waves in the
open nonlinear heat conducting medium, described by a reaction-diffusion
equation. Being posed and actively worked out by the Russian school of A. A.
Samarskii and S.P. Kurdyumov since the seventies of the last century, this
problem still contains open and challenging questions.Comment: 23 pages, 13 figures, the final publication will appear in Springer
Proceedings in Mathematics and Statistics, Numerical Methods for PDEs:
Theory, Algorithms and their Application
The Full Two-Loop R-parity Violating Renormalization Group Equations for All Minimal Supersymmetric Standard Model Couplings
We present the full two-loop -functions for the minimal supersymmetric
standard model couplings, extended to include R-parity violating couplings
through explicit R-parity violation
A Search for leptophilic Z_(l) boson at future linear colliders
We study the possible dynamics associated with leptonic charge in future
linear colliders. Leptophilic massive vector boson, Z_(l), have been
investigated through the process e^(+)e^(-) -> mu^(+)mu^(-). We have shown that
ILC and CLIC will give opportunity to observe Z_(l) with masses up to the
center of mass energy if the corresponding coupling constant g_(l) exceeds
10^(-3).Comment: 12 pages, 10 figure
The Two Roads to "Intrinsic Charm" in B Decays
We describe two complementary ways to show the presence of higher order
effects in the 1/m_Q expansion for inclusive B decays that have been dubbed
"Intrinsic Charm". Apart from the lessons they can teach us about QCD's
nonperturbative dynamics their consideration is relevant for precise
extractions of |V_{cb}|: for they complement the estimate of the potential
impact of 1/m_Q^4 contributions. We draw semiquantitative conclusions for the
expected scale of Weak Annihilation in semileptonic B decays, both for its
valence and non-valence components.Comment: 17 pages, 3 figure
The scalar gluonium correlator: large-beta_0 and beyond
The investigation of the scalar gluonium correlator is interesting because it
carries the quantum numbers of the vacuum and the relevant hadronic current is
related to the anomalous trace of the QCD energy-momentum tensor in the chiral
limit. After reviewing the purely perturbative corrections known up to
next-next-to-leading order, the behaviour of the correlator is studied to all
orders by means of the large-beta_0 approximation. Similar to the QCD Adler
function, the large-order behaviour is governed by the leading ultraviolet
renormalon pole. The structure of infrared renormalon poles, being related to
the operator product expansion are also discussed, as well as a low-energy
theorem for the correlator that provides a relation to the renormalisation
group invariant gluon condensate, and the vacuum matrix element of the trace of
the QCD energy-momentum tensor.Comment: 14 pages, references added, discussion of IR renormalon pole at u=3
extended, similar version to appear in JHE
The Bulk Channel in Thermal Gauge Theories
We investigate the thermal correlator of the trace of the energy-momentum
tensor in the SU(3) Yang-Mills theory. Our goal is to constrain the spectral
function in that channel, whose low-frequency part determines the bulk
viscosity. We focus on the thermal modification of the spectral function,
. Using the operator-product expansion we give
the high-frequency behavior of this difference in terms of thermodynamic
potentials. We take into account the presence of an exact delta function
located at the origin, which had been missed in previous analyses. We then
combine the bulk sum rule and a Monte-Carlo evaluation of the Euclidean
correlator to determine the intervals of frequency where the spectral density
is enhanced or depleted by thermal effects. We find evidence that the thermal
spectral density is non-zero for frequencies below the scalar glueball mass
and is significantly depleted for .Comment: (1+25) pages, 6 figure
Higher Order Power Corrections in Inclusive B Decays
We discuss order 1/m_b^4 and 1/m_b^5 corrections in inclusive semileptonic
decay of a meson. We identify relevant hadronic matrix elements of
dimension seven and eight and estimate them using the ground-state saturation
approximation. Within this approach the effects on the integrated rate and on
kinematic moments are estimated. The overall relative shift in V_{cb} turns out
about +0.4% as applied to the existing fits. Similar estimates are presented
for B -> X_s+\gamma decays.Comment: 30 pages, 16 figure
- …