8,508 research outputs found
Electromagnetic wave diffraction by periodic planar metamaterials with nonlinear constituents
We present a theory which explains how to achieve an enhancement of nonlinear
effects in a thin layer of nonlinear medium by involving a planar periodic
structure specially designed to bear a trapped-mode resonant regime. In
particular, the possibility of a nonlinear thin metamaterial to produce the
bistable response at a relatively low input intensity due to a large quality
factor of the trapped-mode resonance is shown. Also a simple design of an
all-dielectric low-loss silicon-based planar metamaterial which can provide an
extremely sharp resonant reflection and transmission is proposed. The designed
metamaterial is envisioned for aggregating with a pumped active medium to
achieve an enhancement of quantum dots luminescence and to produce an
all-dielectric analog of a 'lasing spaser'.Comment: 18 pages, 13 figure
Domain wall brane in squared curvature gravity
We suggest a thick braneworld model in the squared curvature gravity theory.
Despite the appearance of higher order derivatives, the localization of gravity
and various bulk matter fields is shown to be possible. The existence of the
normalizable gravitational zero mode indicates that our four-dimensional
gravity is reproduced. In order to localize the chiral fermions on the brane,
two types of coupling between the fermions and the brane forming scalar is
introduced. The first coupling leads us to a Schr\"odinger equation with a
volcano potential, and the other a P\"oschl-Teller potential. In both cases,
the zero mode exists only for the left-hand fermions. Several massive KK states
of the fermions can be trapped on the brane, either as resonant states or as
bound states.Comment: 18 pages, 5 figures and 1 table, references added, improved version
to be published in JHE
de Sitter Thick Brane Solution in Weyl Geometry
In this paper, we consider a de Sitter thick brane model in a pure geometric
Weyl integrable five-dimensional space-time, which is a generalization of
Riemann geometry and is invariant under a so-called Weyl rescaling. We find a
solution of this model via performing a conformal transformation to map the
Weylian structure into a familiar Riemannian one with a conformal metric. The
metric perturbations of the model are discussed. For gravitational
perturbation, we get the effective modified Pschl-Teller
potential in corresponding Schrdinger equation for
Kaluza-Klein (KK) modes of the graviton. There is only one bound state, which
is a normalizable massless zero mode and represents a stable 4-dimensional
graviton. Furthermore, there exists a mass gap between the massless mode and
continuous KK modes. We also find that the model is stable under the scalar
perturbation in the metric. The correction to the Newtonian potential on the
brane is proportional to , where is the de Sitter
parameter of the brane. This is very different from the correction caused by a
volcano-like effective potential.Comment: 24 pages, 13 figures, published versio
Controlling light-with-light without nonlinearity
According to Huygens' superposition principle, light beams traveling in a
linear medium will pass though one another without mutual disturbance. Indeed,
it is widely held that controlling light signals with light requires intense
laser fields to facilitate beam interactions in nonlinear media, where the
superposition principle can be broken. We demonstrate here that two coherent
beams of light of arbitrarily low intensity can interact on a metamaterial
layer of nanoscale thickness in such a way that one beam modulates the
intensity of the other. We show that the interference of beams can eliminate
the plasmonic Joule losses of light energy in the metamaterial or, in contrast,
can lead to almost total absorbtion of light. Applications of this phenomenon
may lie in ultrafast all-optical pulse-recovery devices, coherence filters and
THz-bandwidth light-by-light modulators
Effects of stitching on delamination of satin weave carbon-epoxy laminates under mode I, mode II and mixed-mode I/II loadings
The objective of the present study is to characterize the effect of modified chain stitching on the delamination growth under mixed-mode I/II loading conditions. Delamination toughness under mode I is experimentally determined, for unstitched and stitched laminates, by using untabbed and tabbed double cantilever beam (TDCB) tests. The effect of the reinforcing tabs on mode I toughness is investigated. Stitching improves the energy release rate (ERR) up to 4 times in mode I. Mode II delamination toughness is evaluated in end-notched flexure (ENF) tests. Different geometries of stitched specimens are tested. Crack propagation occurs without any failure of stitching yarns. The final crack length attains the mid-span or it stops before and the specimen breaks in bending. The ERR is initially low and gradually increases with crack length to very high values. The mixedmode delamination behaviour is investigated using a mixed-mode bending (MMB) test. For unstitched specimens, a simple mixed-mode criterion is identified. For stitched specimens, stitching yarns do not break during 25% of mode I ratio tests and the ERR increase is relatively small compared to unstitched values. For 70% and 50% of mode I ratios, failures of yarns are observed during crack propagation and tests are able to capture correctly the effect of the stitching: it clearly improves the ERR for these two mixed modes, as much as threefold
Intrinsic synergistic-topological mechanism versus synergistic-topological matrix in microtubule self-organization
Background
In this body of work we investigate the synergistic-topological relationship during self-organization of the microtubule fiber in vitro, which is composed of straight, axially shifted and non-shifted, acentrosomal microtubules under crowded conditions.
Methods
We used electron microscopy to observe morphological details of ordered straight microtubules. This included the observation of the differences in length distribution between microtubules in ordered and non-ordered phases followed by the observation of the formation of interface gaps between axially shifted and ordered microtubules. We performed calculations to confirm that the principle of summation of pairwise electrostatic forces act between neighboring microtubules all their entire length.
Results
We have shown that the self-organization of a microtubule fiber imposes a variety of topological restrictions onto its constituting components: (a) tips of axially shifted neighboring microtubules are not in direct contact but rather create an ‘interface gap’; (b) fibers are always composed of a restricted number of microtubules at given solution conditions; (c) the average length of microtubules that constitute a fiber is always shorter than that of microtubules outside a fiber; (d) the length distribution of microtubules that constitute a fiber is narrower than that of microtubules outside a fiber and this effect is more pronounced at higher GTP-tubulin concentrations; (e) a cooperative motion of fiber microtubules due to actualization of the summation principle of pairwise electrostatic forces; (f) appearance of local GTP-tubulin depletion immediately in front of the tips of fiber microtubules.
Conclusion
Overall our data indicate that under crowded conditions in vitro, the self-organization of a microtubule fiber is governed by an intrinsic synergistic-topological mechanism, which in conjunction with the topological changes, GTP-tubulin depletion, and cooperative motion of fiber constituting microtubules, may generate and maintain a ‘synergistic-topological matrix’. Failure of the mechanism to form biologically feasible microtubule synergistic-topological matrix may, per se, precondition tumorigenesis. © 2014 BioMed Central Lt
Low-Energy Theorems from Holography
In the context of gauge/gravity duality, we verify two types of gauge theory
low-energy theorems, the dilation Ward identities and the decoupling of heavy
flavor. First, we provide an analytic proof of non-trivial dilation Ward
identities for a theory holographically dual to a background with gluon
condensate (the self-dual Liu--Tseytlin background). In this way an important
class of low-energy theorems for correlators of different operators with the
trace of the energy-momentum tensor is established, which so far has been
studied in field theory only. Another low-energy relationship, the so-called
decoupling theorem, is numerically shown to hold universally in three
holographic models involving both the quark and the gluon condensate. We show
this by comparing the ratio of the quark and gluon condensates in three
different examples of gravity backgrounds with non-trivial dilaton flow. As a
by-product of our study, we also obtain gauge field condensate contributions to
meson transport coefficients.Comment: 32 pages, 4 figures, two references added, typos remove
Dark-adapted red flash ERGs in healthy adults
Purpose: The x-wave of the dark-adapted (DA) ERG to a red flash reflects DA cone function. This exploratory study of healthy adults aimed to investigate changes in the DA red ERG with flash strength and during dark adaptation to optimise visualisation and therefore quantification of the x-wave.
Methods: The effect of altering red flash strength was investigated in four subjects by recording ERGs after 20 minutes dark adaptation to red flashes (0.2–2.0 cd s m-2) using skin electrodes and natural pupils. The effect of dark adaptation duration was investigated in 16 subjects during 20 minutes in the dark, by recording DA 1.5 red ERGs at 1, 2, 3, 4, 5, 10, 15 and 20 minutes.
Results: For a dark adaption period of 20 minutes, the x-wave was more clearly visualised to weaker (< 0.6 cd s m-2) red flash strengths: to stronger flashes it became obscured by the b-wave. For red flashes of 1.5 cd s m-2, the x-wave was most prominent in ERGs recorded after 1–5 minutes of dark adaptation: with longer dark-adaptation, it was subsumed into the b-wave’s rising edge.
Conclusions: This small study suggests that x-wave visibility in healthy subjects after 20 minutes dark adaptation is improved by using flashes weaker than around 0.6 cd s m-2; for flash strengths of 1.5 cd s m-2, x-wave visibility is enhanced by recording after only around 5 minutes of dark adaptation. No evidence was found that interim red flash ERGs affecting the dark-adapted state of the normal retina
- …