8,508 research outputs found

    Electromagnetic wave diffraction by periodic planar metamaterials with nonlinear constituents

    Full text link
    We present a theory which explains how to achieve an enhancement of nonlinear effects in a thin layer of nonlinear medium by involving a planar periodic structure specially designed to bear a trapped-mode resonant regime. In particular, the possibility of a nonlinear thin metamaterial to produce the bistable response at a relatively low input intensity due to a large quality factor of the trapped-mode resonance is shown. Also a simple design of an all-dielectric low-loss silicon-based planar metamaterial which can provide an extremely sharp resonant reflection and transmission is proposed. The designed metamaterial is envisioned for aggregating with a pumped active medium to achieve an enhancement of quantum dots luminescence and to produce an all-dielectric analog of a 'lasing spaser'.Comment: 18 pages, 13 figure

    Domain wall brane in squared curvature gravity

    Full text link
    We suggest a thick braneworld model in the squared curvature gravity theory. Despite the appearance of higher order derivatives, the localization of gravity and various bulk matter fields is shown to be possible. The existence of the normalizable gravitational zero mode indicates that our four-dimensional gravity is reproduced. In order to localize the chiral fermions on the brane, two types of coupling between the fermions and the brane forming scalar is introduced. The first coupling leads us to a Schr\"odinger equation with a volcano potential, and the other a P\"oschl-Teller potential. In both cases, the zero mode exists only for the left-hand fermions. Several massive KK states of the fermions can be trapped on the brane, either as resonant states or as bound states.Comment: 18 pages, 5 figures and 1 table, references added, improved version to be published in JHE

    de Sitter Thick Brane Solution in Weyl Geometry

    Full text link
    In this paper, we consider a de Sitter thick brane model in a pure geometric Weyl integrable five-dimensional space-time, which is a generalization of Riemann geometry and is invariant under a so-called Weyl rescaling. We find a solution of this model via performing a conformal transformation to map the Weylian structure into a familiar Riemannian one with a conformal metric. The metric perturbations of the model are discussed. For gravitational perturbation, we get the effective modified Po¨\ddot{\text{o}}schl-Teller potential in corresponding Schro¨\ddot{\text{o}}dinger equation for Kaluza-Klein (KK) modes of the graviton. There is only one bound state, which is a normalizable massless zero mode and represents a stable 4-dimensional graviton. Furthermore, there exists a mass gap between the massless mode and continuous KK modes. We also find that the model is stable under the scalar perturbation in the metric. The correction to the Newtonian potential on the brane is proportional to e−3rβ/2/r2e^{-3 r \beta/2}/r^2, where β\beta is the de Sitter parameter of the brane. This is very different from the correction caused by a volcano-like effective potential.Comment: 24 pages, 13 figures, published versio

    Controlling light-with-light without nonlinearity

    Full text link
    According to Huygens' superposition principle, light beams traveling in a linear medium will pass though one another without mutual disturbance. Indeed, it is widely held that controlling light signals with light requires intense laser fields to facilitate beam interactions in nonlinear media, where the superposition principle can be broken. We demonstrate here that two coherent beams of light of arbitrarily low intensity can interact on a metamaterial layer of nanoscale thickness in such a way that one beam modulates the intensity of the other. We show that the interference of beams can eliminate the plasmonic Joule losses of light energy in the metamaterial or, in contrast, can lead to almost total absorbtion of light. Applications of this phenomenon may lie in ultrafast all-optical pulse-recovery devices, coherence filters and THz-bandwidth light-by-light modulators

    Effects of stitching on delamination of satin weave carbon-epoxy laminates under mode I, mode II and mixed-mode I/II loadings

    Get PDF
    The objective of the present study is to characterize the effect of modified chain stitching on the delamination growth under mixed-mode I/II loading conditions. Delamination toughness under mode I is experimentally determined, for unstitched and stitched laminates, by using untabbed and tabbed double cantilever beam (TDCB) tests. The effect of the reinforcing tabs on mode I toughness is investigated. Stitching improves the energy release rate (ERR) up to 4 times in mode I. Mode II delamination toughness is evaluated in end-notched flexure (ENF) tests. Different geometries of stitched specimens are tested. Crack propagation occurs without any failure of stitching yarns. The final crack length attains the mid-span or it stops before and the specimen breaks in bending. The ERR is initially low and gradually increases with crack length to very high values. The mixedmode delamination behaviour is investigated using a mixed-mode bending (MMB) test. For unstitched specimens, a simple mixed-mode criterion is identified. For stitched specimens, stitching yarns do not break during 25% of mode I ratio tests and the ERR increase is relatively small compared to unstitched values. For 70% and 50% of mode I ratios, failures of yarns are observed during crack propagation and tests are able to capture correctly the effect of the stitching: it clearly improves the ERR for these two mixed modes, as much as threefold

    Intrinsic synergistic-topological mechanism versus synergistic-topological matrix in microtubule self-organization

    Get PDF
    Background In this body of work we investigate the synergistic-topological relationship during self-organization of the microtubule fiber in vitro, which is composed of straight, axially shifted and non-shifted, acentrosomal microtubules under crowded conditions. Methods We used electron microscopy to observe morphological details of ordered straight microtubules. This included the observation of the differences in length distribution between microtubules in ordered and non-ordered phases followed by the observation of the formation of interface gaps between axially shifted and ordered microtubules. We performed calculations to confirm that the principle of summation of pairwise electrostatic forces act between neighboring microtubules all their entire length. Results We have shown that the self-organization of a microtubule fiber imposes a variety of topological restrictions onto its constituting components: (a) tips of axially shifted neighboring microtubules are not in direct contact but rather create an ‘interface gap’; (b) fibers are always composed of a restricted number of microtubules at given solution conditions; (c) the average length of microtubules that constitute a fiber is always shorter than that of microtubules outside a fiber; (d) the length distribution of microtubules that constitute a fiber is narrower than that of microtubules outside a fiber and this effect is more pronounced at higher GTP-tubulin concentrations; (e) a cooperative motion of fiber microtubules due to actualization of the summation principle of pairwise electrostatic forces; (f) appearance of local GTP-tubulin depletion immediately in front of the tips of fiber microtubules. Conclusion Overall our data indicate that under crowded conditions in vitro, the self-organization of a microtubule fiber is governed by an intrinsic synergistic-topological mechanism, which in conjunction with the topological changes, GTP-tubulin depletion, and cooperative motion of fiber constituting microtubules, may generate and maintain a ‘synergistic-topological matrix’. Failure of the mechanism to form biologically feasible microtubule synergistic-topological matrix may, per se, precondition tumorigenesis. © 2014 BioMed Central Lt

    Low-Energy Theorems from Holography

    Full text link
    In the context of gauge/gravity duality, we verify two types of gauge theory low-energy theorems, the dilation Ward identities and the decoupling of heavy flavor. First, we provide an analytic proof of non-trivial dilation Ward identities for a theory holographically dual to a background with gluon condensate (the self-dual Liu--Tseytlin background). In this way an important class of low-energy theorems for correlators of different operators with the trace of the energy-momentum tensor is established, which so far has been studied in field theory only. Another low-energy relationship, the so-called decoupling theorem, is numerically shown to hold universally in three holographic models involving both the quark and the gluon condensate. We show this by comparing the ratio of the quark and gluon condensates in three different examples of gravity backgrounds with non-trivial dilaton flow. As a by-product of our study, we also obtain gauge field condensate contributions to meson transport coefficients.Comment: 32 pages, 4 figures, two references added, typos remove

    Dark-adapted red flash ERGs in healthy adults

    Get PDF
    Purpose: The x-wave of the dark-adapted (DA) ERG to a red flash reflects DA cone function. This exploratory study of healthy adults aimed to investigate changes in the DA red ERG with flash strength and during dark adaptation to optimise visualisation and therefore quantification of the x-wave. Methods: The effect of altering red flash strength was investigated in four subjects by recording ERGs after 20 minutes dark adaptation to red flashes (0.2–2.0 cd s m-2) using skin electrodes and natural pupils. The effect of dark adaptation duration was investigated in 16 subjects during 20 minutes in the dark, by recording DA 1.5 red ERGs at 1, 2, 3, 4, 5, 10, 15 and 20 minutes. Results: For a dark adaption period of 20 minutes, the x-wave was more clearly visualised to weaker (< 0.6 cd s m-2) red flash strengths: to stronger flashes it became obscured by the b-wave. For red flashes of 1.5 cd s m-2, the x-wave was most prominent in ERGs recorded after 1–5 minutes of dark adaptation: with longer dark-adaptation, it was subsumed into the b-wave’s rising edge. Conclusions: This small study suggests that x-wave visibility in healthy subjects after 20 minutes dark adaptation is improved by using flashes weaker than around 0.6 cd s m-2; for flash strengths of 1.5 cd s m-2, x-wave visibility is enhanced by recording after only around 5 minutes of dark adaptation. No evidence was found that interim red flash ERGs affecting the dark-adapted state of the normal retina
    • …
    corecore