39 research outputs found
BKM Lie superalgebras from counting twisted CHL dyons
Following Sen[arXiv:0911.1563], we study the counting of (`twisted') BPS
states that contribute to twisted helicity trace indices in four-dimensional
CHL models with N=4 supersymmetry. The generating functions of half-BPS states,
twisted as well as untwisted, are given in terms of multiplicative eta products
with the Mathieu group, M_{24}, playing an important role. These multiplicative
eta products enable us to construct Siegel modular forms that count twisted
quarter-BPS states. The square-roots of these Siegel modular forms turn out be
precisely a special class of Siegel modular forms, the dd-modular forms, that
have been classified by Clery and Gritsenko[arXiv:0812.3962]. We show that each
one of these dd-modular forms arise as the Weyl-Kac-Borcherds denominator
formula of a rank-three Borcherds-Kac-Moody Lie superalgebra. The walls of the
Weyl chamber are in one-to-one correspondence with the walls of marginal
stability in the corresponding CHL model for twisted dyons as well as untwisted
ones. This leads to a periodic table of BKM Lie superalgebras with properties
that are consistent with physical expectations.Comment: LaTeX, 32 pages; (v2) matches published versio
BKM Lie superalgebra for the Z_5 orbifolded CHL string
We study the Z_5-orbifolding of the CHL string theory by explicitly
constructing the modular form tilde{Phi}_2 generating the degeneracies of the
1/4-BPS states in the theory. Since the additive seed for the sum form is a
weak Jacobi form in this case, a mismatch is found between the modular forms
generated from the additive lift and the product form derived from threshold
corrections. We also construct the BKM Lie superalgebra, tilde{G}_5,
corresponding to the modular form tilde{Delta}_1 (Z) = tilde{Phi}_2 (Z)^{1/2}
which happens to be a hyperbolic algebra. This is the first occurrence of a
hyperbolic BKM Lie superalgebra. We also study the walls of marginal stability
of this theory in detail, and extend the arithmetic structure found by Cheng
and Dabholkar for the N=1,2,3 orbifoldings to the N=4,5 and 6 models, all of
which have an infinite number of walls in the fundamental domain. We find that
analogous to the Stern-Brocot tree, which generated the intercepts of the walls
on the real line, the intercepts for the N >3 cases are generated by linear
recurrence relations. Using the correspondence between the walls of marginal
stability and the walls of the Weyl chamber of the corresponding BKM Lie
superalgebra, we propose the Cartan matrices for the BKM Lie superalgebras
corresponding to the N=5 and 6 models.Comment: 30 pages, 2 figure
Holomorphic anomaly equations and the Igusa cusp form conjecture
Let be a K3 surface and let be an elliptic curve. We solve the
reduced Gromov-Witten theory of the Calabi-Yau threefold for all
curve classes which are primitive in the K3 factor. In particular, we deduce
the Igusa cusp form conjecture.
The proof relies on new results in the Gromov-Witten theory of elliptic
curves and K3 surfaces. We show the generating series of Gromov-Witten classes
of an elliptic curve are cycle-valued quasimodular forms and satisfy a
holomorphic anomaly equation. The quasimodularity generalizes a result by
Okounkov and Pandharipande, and the holomorphic anomaly equation proves a
conjecture of Milanov, Ruan and Shen. We further conjecture quasimodularity and
holomorphic anomaly equations for the cycle-valued Gromov-Witten theory of
every elliptic fibration with section. The conjecture generalizes the
holomorphic anomaly equations for ellliptic Calabi-Yau threefolds predicted by
Bershadsky, Cecotti, Ooguri, and Vafa. We show a modified conjecture holds
numerically for the reduced Gromov-Witten theory of K3 surfaces in primitive
classes.Comment: 68 page
Crossings, Motzkin paths and Moments
Kasraoui, Stanton and Zeng, and Kim, Stanton and Zeng introduced certain
-analogues of Laguerre and Charlier polynomials. The moments of these
orthogonal polynomials have combinatorial models in terms of crossings in
permutations and set partitions. The aim of this article is to prove simple
formulas for the moments of the -Laguerre and the -Charlier polynomials,
in the style of the Touchard-Riordan formula (which gives the moments of some
-Hermite polynomials, and also the distribution of crossings in matchings).
Our method mainly consists in the enumeration of weighted Motzkin paths, which
are naturally associated with the moments. Some steps are bijective, in
particular we describe a decomposition of paths which generalises a previous
construction of Penaud for the case of the Touchard-Riordan formula. There are
also some non-bijective steps using basic hypergeometric series, and continued
fractions or, alternatively, functional equations.Comment: 21 page
Borcherds Algebras and N=4 Topological Amplitudes
The perturbative spectrum of BPS-states in the E_8 x E_8 heterotic string
theory compactified on T^2 is analysed. We show that the space of BPS-states
forms a representation of a certain Borcherds algebra G which we construct
explicitly using an auxiliary conformal field theory. The denominator formula
of an extension G_{ext} \supset G of this algebra is then found to appear in a
certain heterotic one-loop N=4 topological string amplitude. Our construction
thus gives an N=4 realisation of the idea envisioned by Harvey and Moore,
namely that the `algebra of BPS-states' controls the threshold corrections in
the heterotic string.Comment: 39 page
Interface structure of ultrathin oxide prepared by N2O oxidation
With X-ray photoelectron spectroscopy (XPS) measurements, we found in the N2O-grown oxide that the nitrogen incorporation should involve the NO or N reaction with the Si-Si bond and P-b centers at the interface. Consequently, nitrogen content is very low and accumulated mainly at the interface. In addition, we found that the nitrogen atoms at the interface exist in the form of Si-N bonding and the interface oxynitride layer is a mixture of SiO2 and Si-3 N-4 clusters. This structure will result in several undesirable effects. It will give rise to the permittivity and bandgap fluctuations at the interface and hence induced gigantic surface potential fluctuation and mobility degradation in the channel of MOS devices. This bonding structure also explains the interface trap generation during the electrical stressing. The sources of trap generation are attributed to the Si-Si bonds, Pb centers, and nitride-related defects due to the over-constrained silicon atoms in the Si3N4 clusters at the interface