39 research outputs found

    BKM Lie superalgebras from counting twisted CHL dyons

    Full text link
    Following Sen[arXiv:0911.1563], we study the counting of (`twisted') BPS states that contribute to twisted helicity trace indices in four-dimensional CHL models with N=4 supersymmetry. The generating functions of half-BPS states, twisted as well as untwisted, are given in terms of multiplicative eta products with the Mathieu group, M_{24}, playing an important role. These multiplicative eta products enable us to construct Siegel modular forms that count twisted quarter-BPS states. The square-roots of these Siegel modular forms turn out be precisely a special class of Siegel modular forms, the dd-modular forms, that have been classified by Clery and Gritsenko[arXiv:0812.3962]. We show that each one of these dd-modular forms arise as the Weyl-Kac-Borcherds denominator formula of a rank-three Borcherds-Kac-Moody Lie superalgebra. The walls of the Weyl chamber are in one-to-one correspondence with the walls of marginal stability in the corresponding CHL model for twisted dyons as well as untwisted ones. This leads to a periodic table of BKM Lie superalgebras with properties that are consistent with physical expectations.Comment: LaTeX, 32 pages; (v2) matches published versio

    BKM Lie superalgebra for the Z_5 orbifolded CHL string

    Full text link
    We study the Z_5-orbifolding of the CHL string theory by explicitly constructing the modular form tilde{Phi}_2 generating the degeneracies of the 1/4-BPS states in the theory. Since the additive seed for the sum form is a weak Jacobi form in this case, a mismatch is found between the modular forms generated from the additive lift and the product form derived from threshold corrections. We also construct the BKM Lie superalgebra, tilde{G}_5, corresponding to the modular form tilde{Delta}_1 (Z) = tilde{Phi}_2 (Z)^{1/2} which happens to be a hyperbolic algebra. This is the first occurrence of a hyperbolic BKM Lie superalgebra. We also study the walls of marginal stability of this theory in detail, and extend the arithmetic structure found by Cheng and Dabholkar for the N=1,2,3 orbifoldings to the N=4,5 and 6 models, all of which have an infinite number of walls in the fundamental domain. We find that analogous to the Stern-Brocot tree, which generated the intercepts of the walls on the real line, the intercepts for the N >3 cases are generated by linear recurrence relations. Using the correspondence between the walls of marginal stability and the walls of the Weyl chamber of the corresponding BKM Lie superalgebra, we propose the Cartan matrices for the BKM Lie superalgebras corresponding to the N=5 and 6 models.Comment: 30 pages, 2 figure

    Holomorphic anomaly equations and the Igusa cusp form conjecture

    Full text link
    Let SS be a K3 surface and let EE be an elliptic curve. We solve the reduced Gromov-Witten theory of the Calabi-Yau threefold S×ES \times E for all curve classes which are primitive in the K3 factor. In particular, we deduce the Igusa cusp form conjecture. The proof relies on new results in the Gromov-Witten theory of elliptic curves and K3 surfaces. We show the generating series of Gromov-Witten classes of an elliptic curve are cycle-valued quasimodular forms and satisfy a holomorphic anomaly equation. The quasimodularity generalizes a result by Okounkov and Pandharipande, and the holomorphic anomaly equation proves a conjecture of Milanov, Ruan and Shen. We further conjecture quasimodularity and holomorphic anomaly equations for the cycle-valued Gromov-Witten theory of every elliptic fibration with section. The conjecture generalizes the holomorphic anomaly equations for ellliptic Calabi-Yau threefolds predicted by Bershadsky, Cecotti, Ooguri, and Vafa. We show a modified conjecture holds numerically for the reduced Gromov-Witten theory of K3 surfaces in primitive classes.Comment: 68 page

    Crossings, Motzkin paths and Moments

    Get PDF
    Kasraoui, Stanton and Zeng, and Kim, Stanton and Zeng introduced certain qq-analogues of Laguerre and Charlier polynomials. The moments of these orthogonal polynomials have combinatorial models in terms of crossings in permutations and set partitions. The aim of this article is to prove simple formulas for the moments of the qq-Laguerre and the qq-Charlier polynomials, in the style of the Touchard-Riordan formula (which gives the moments of some qq-Hermite polynomials, and also the distribution of crossings in matchings). Our method mainly consists in the enumeration of weighted Motzkin paths, which are naturally associated with the moments. Some steps are bijective, in particular we describe a decomposition of paths which generalises a previous construction of Penaud for the case of the Touchard-Riordan formula. There are also some non-bijective steps using basic hypergeometric series, and continued fractions or, alternatively, functional equations.Comment: 21 page

    Borcherds Algebras and N=4 Topological Amplitudes

    Full text link
    The perturbative spectrum of BPS-states in the E_8 x E_8 heterotic string theory compactified on T^2 is analysed. We show that the space of BPS-states forms a representation of a certain Borcherds algebra G which we construct explicitly using an auxiliary conformal field theory. The denominator formula of an extension G_{ext} \supset G of this algebra is then found to appear in a certain heterotic one-loop N=4 topological string amplitude. Our construction thus gives an N=4 realisation of the idea envisioned by Harvey and Moore, namely that the `algebra of BPS-states' controls the threshold corrections in the heterotic string.Comment: 39 page

    Interface structure of ultrathin oxide prepared by N2O oxidation

    Full text link
    With X-ray photoelectron spectroscopy (XPS) measurements, we found in the N2O-grown oxide that the nitrogen incorporation should involve the NO or N reaction with the Si-Si bond and P-b centers at the interface. Consequently, nitrogen content is very low and accumulated mainly at the interface. In addition, we found that the nitrogen atoms at the interface exist in the form of Si-N bonding and the interface oxynitride layer is a mixture of SiO2 and Si-3 N-4 clusters. This structure will result in several undesirable effects. It will give rise to the permittivity and bandgap fluctuations at the interface and hence induced gigantic surface potential fluctuation and mobility degradation in the channel of MOS devices. This bonding structure also explains the interface trap generation during the electrical stressing. The sources of trap generation are attributed to the Si-Si bonds, Pb centers, and nitride-related defects due to the over-constrained silicon atoms in the Si3N4 clusters at the interface
    corecore