123 research outputs found

    Higher Equations of Motion in Boundary Liouville Field Theory

    Full text link
    In addition to the ordinary bulk higher equations of motion in the boundary version of the Liouville conformal field theory, an infinite set of relations containing the boundary operators is found. These equations are in one-to-one correspondence with the singular representations of the Virasoro algebra. We comment on the possible applications in the context of minimal boundary Liouville gravity.Comment: 18 page

    Instantons and 2d Superconformal field theory

    Full text link
    A recently proposed correspondence between 4-dimensional N=2 SUSY SU(k) gauge theories on R^4/Z_m and SU(k) Toda-like theories with Z_m parafermionic symmetry is used to construct four-point N=1 super Liouville conformal block, which corresponds to the particular case k=m=2. The construction is based on the conjectural relation between moduli spaces of SU(2) instantons on R^4/Z_2 and algebras like \hat{gl}(2)_2\times NSR. This conjecture is confirmed by checking the coincidence of number of fixed points on such instanton moduli space with given instanton number N and dimension of subspace degree N in the representation of such algebra.Comment: 13 pages, exposition improved, references adde

    Conformal Toda theory with a boundary

    Full text link
    We investigate sl(n) conformal Toda theory with maximally symmetric boundaries. There are two types of maximally symmetric boundary conditions, due to the existence of an order two automorphism of the W(n>2) algebra. In one of the two cases, we find that there exist D-branes of all possible dimensions 0 =< d =< n-1, which correspond to partly degenerate representations of the W(n) algebra. We perform classical and conformal bootstrap analyses of such D-branes, and relate these two approaches by using the semi-classical light asymptotic limit. In particular we determine the bulk one-point functions. We observe remarkably severe divergences in the annulus partition functions, and attribute their origin to the existence of infinite multiplicities in the fusion of representations of the W(n>2) algebra. We also comment on the issue of the existence of a boundary action, using the calculus of constrained functional forms, and derive the generating function of the B"acklund transformation for sl(3) Toda classical mechanics, using the minisuperspace limit of the bulk one-point function.Comment: 42 pages; version 4: added clarifications in section 2.2 and footnotes 1 and

    Field theory of scaling lattice models. The Potts antiferromagnet

    Full text link
    In contrast to what happens for ferromagnets, the lattice structure participates in a crucial way to determine existence and type of critical behaviour in antiferromagnetic systems. It is an interesting question to investigate how the memory of the lattice survives in the field theory describing a scaling antiferromagnet. We discuss this issue for the square lattice three-state Potts model, whose scaling limit as T->0 is argued to be described exactly by the sine-Gordon field theory at a specific value of the coupling. The solution of the scaling ferromagnetic case is recalled for comparison. The field theory describing the crossover from antiferromagnetic to ferromagnetic behaviour is also introduced.Comment: 11 pages, to appear in the proceedings of the NATO Advanced Research Workshop on Statistical Field Theories, Como 18-23 June 200

    Gauge Theory Wilson Loops and Conformal Toda Field Theory

    Full text link
    The partition function of a family of four dimensional N=2 gauge theories has been recently related to correlation functions of two dimensional conformal Toda field theories. For SU(2) gauge theories, the associated two dimensional theory is A_1 conformal Toda field theory, i.e. Liouville theory. For this case the relation has been extended showing that the expectation value of gauge theory loop operators can be reproduced in Liouville theory inserting in the correlators the monodromy of chiral degenerate fields. In this paper we study Wilson loops in SU(N) gauge theories in the fundamental and anti-fundamental representation of the gauge group and show that they are associated to monodromies of a certain chiral degenerate operator of A_{N-1} Toda field theory. The orientation of the curve along which the monodromy is evaluated selects between fundamental and anti-fundamental representation. The analysis is performed using properties of the monodromy group of the generalized hypergeometric equation, the differential equation satisfied by a class of four point functions relevant for our computation.Comment: 17 pages, 3 figures; references added

    Parafermionic Liouville field theory and instantons on ALE spaces

    Full text link
    In this paper we study the correspondence between the su^(n)k⊕su^(n)p/su^(n)k+p\hat{\textrm{su}}(n)_{k}\oplus \hat{\textrm{su}}(n)_{p}/\hat{\textrm{su}}(n)_{k+p} coset conformal field theories and N=2\mathcal{N}=2 SU(n) gauge theories on R4/Zp\mathbb{R}^{4}/\mathbb{Z}_{p}. Namely we check the correspondence between the SU(2) Nekrasov partition function on R4/Z4\mathbb{R}^{4}/\mathbb{Z}_{4} and the conformal blocks of the S3S_{3} parafermion algebra (in SS and DD modules). We find that they are equal up to the U(1)-factor as it was in all cases of AGT-like relations. Studying the structure of the instanton partition function on R4/Zp\mathbb{R}^4/\mathbb{Z}_p we also find some evidence that this correspondence with arbitrary pp takes place up to the U(1)-factor.Comment: 21 pages, 6 figures, misprints corrected, references added, version to appear in JHE
    • …
    corecore