5 research outputs found

    Coexistence of Single and Double-Quantum Vortex Lines

    Full text link
    We discuss the configurations in which singly and doubly quantized vortex lines may coexist in a rotating superfluid. General principles of energy minimization lead to the conclusion that in equilibrium the two vortex species segregate within a cylindrical vortex cluster in two coaxial domains where the singly quantized lines are in the outer annular region. This is confirmed with simulation calculations on discrete vortex lines. Experimentally the coexistence can be studied in rotating superfluid 3^3He-A. With cw NMR techniques we find the radial distribution of the two vortex species to depend on how the cluster is prepared: (i) By cooling through TcT_c in rotation, coexistence in the minimum energy configuration is confirmed. (ii) A glassy agglomerate is formed if one starts with an equilibrium cluster of single-quantum vortex lines and adds to it sequentially double-quantum lines, by increasing the rotation velocity in the superfluid state. This proves that the energy barriers, which separate different cluster configurations, are too high for metastabilities to anneal.Comment: 12 pages, 11 figures; Changed content, 15 pages, 14 figure

    Calculation of NMR Properties of Solitons in Superfluid 3He-A

    Full text link
    Superfluid 3He-A has domain-wall-like structures, which are called solitons. We calculate numerically the structure of a splay soliton. We study the effect of solitons on the nuclear-magnetic-resonance spectrum by calculating the frequency shifts and the amplitudes of the soliton peaks for both longitudinal and transverse oscillations of magnetization. The effect of dissipation caused by normal-superfluid conversion and spin diffusion is calculated. The calculations are in good agreement with experiments, except a problem in the transverse resonance frequency of the splay soliton or in magnetic-field dependence of reduced resonance frequencies.Comment: 15 pages, 10 figures, updated to the published versio

    Electronic dynamic Hubbard model: exact diagonalization study

    Full text link
    A model to describe electronic correlations in energy bands is considered. The model is a generalization of the conventional Hubbard model that allows for the fact that the wavefunction for two electrons occupying the same Wannier orbital is different from the product of single electron wavefunctions. We diagonalize the Hamiltonian exactly on a four-site cluster and study its properties as function of band filling. The quasiparticle weight is found to decrease and the quasiparticle effective mass to increase as the electronic band filling increases, and spectral weight in one- and two-particle spectral functions is transfered from low to high frequencies as the band filling increases. Quasiparticles at the Fermi energy are found to be more 'dressed' when the Fermi level is in the upper half of the band (hole carriers) than when it is in the lower half of the band (electron carriers). The effective interaction between carriers is found to be strongly dependent on band filling becoming less repulsive as the band filling increases, and attractive near the top of the band in certain parameter ranges. The effective interaction is most attractive when the single hole carriers are most heavily dressed, and in the parameter regime where the effective interaction is attractive, hole carriers are found to 'undress', hence become more like electrons, when they pair. It is proposed that these are generic properties of electronic energy bands in solids that reflect a fundamental electron-hole asymmetry of condensed matter. The relation of these results to the understanding of superconductivity in solids is discussed.Comment: Small changes following referee's comment

    Periodic Vortex Structures in Superfluid 3He-A

    Full text link
    We discuss the general properties of periodic vortex arrangements in rotating superfluids. The different possible structures are classified according to the symmetry space-groups and the circulation number. We calculate numerically several types of vortex structures in superfluid 3He-A. The calculations are done in the Ginzburg-Landau region, but the method is applicable at all temperatures. A phase diagram of vortices is constructed in the plane formed by the magnetic field and the rotation velocity. The characteristics of the six equilibrium vortex solutions are discussed. One of these, the locked vortex 3, has not been considered in the literature before. The vortex sheet forms the equilibrium state of rotating 3He-A at rotation velocities exceeding 2.6 rad/s. The results are in qualitative agreement with experiments.Comment: 13 pages, 7 figures, http://boojum.hut.fi/research/theory/diagram.htm
    corecore