9 research outputs found
The dynamics of a hole in a CuO_4 plaquette: electron energy-loss spectroscopy of Li_2CuO_2
We have measured the energy and momentum dependent loss function of Li_2CuO_2
single crystals by means of electron energy-loss spectroscopy in transmission.
Using the same values for the model parameters, the low-energy features of the
spectrum as well as published Cu 2p_(3/2) x-ray photoemission data of Li_2CuO_2
are well described by a cluster model that consists of a single CuO_4 plaquette
only. This demonstrates that charge excitations in Li_2CuO_2 are strongly
localized.Comment: 5 pages, 5 figure
Spin polaron damping in the spin-fermion model for cuprate superconductors
A self-consistent, spin rotational invariant Green's function procedure has
been developed to calculate the spectral function of carrier excitations in the
spin-fermion model for the CuO2 plane. We start from the mean field description
of a spin polaron in the Mori-Zwanzig projection method. In order to determine
the spin polaron lifetime in the self-consistent Born approximation, the
self-energy is expressed by an irreducible Green's function. Both, spin polaron
and bare hole spectral functions are calculated. The numerical results show a
well pronounced quasiparticle peak near the bottom of the dispersion at
(pi/2,pi/2), the absence of the quasiparticle at the Gamma-point, a rather
large damping away from the minimum and an asymmetry of the spectral function
with respect to the antiferromagnetic Brillouin zone. These findings are in
qualitative agreement with photoemission data for undoped cuprates. The direct
oxygen-oxygen hopping is responsible for a more isotropic minimum at
(pi/2,pi/2).Comment: 18 pages, 13 figure