18 research outputs found

    Dark matter search in missing energy events with NA64

    Get PDF
    A search for sub-GeV dark matter production mediated by a new vector boson A′, called a dark photon, is performed by the NA64 experiment in missing energy events from 100 GeV electron interactions in an active beam dump at the CERN SPS. From the analysis of the data collected in the years 2016, 2017, and 2018 with 2.84×1011 electrons on target no evidence of such a process has been found. The most stringent constraints on the A′ mixing strength with photons and the parameter space for the scalar and fermionic dark matter in the mass range ≲0.2  GeV are derived, thus demonstrating the power of the active beam dump approach for the dark matter search.A search for sub-GeV dark matter production mediated by a new vector boson AA', called dark photon, is performed by the NA64 experiment in missing energy events from 100 GeV electron interactions in an active beam dump at the CERN SPS. From the analysis of the data collected in the years 2016, 2017, and 2018 with 2.84×10112.84\times10^{11} electrons on target no evidence of such a process has been found. The most stringent constraints on the AA' mixing strength with photons and the parameter space for the scalar and fermionic dark matter in the mass range 0.2\lesssim 0.2 GeV are derived, thus demonstrating the power of the active beam dump approach for the dark matter search

    Improved exclusion limit for light dark matter from e+ee^+e^- annihilation in NA64

    Get PDF
    The current most stringent constraints for the existence of sub-GeV dark matter coupling to Standard Model via a massive vector boson A′ were set by the NA64 experiment for the mass region mA′≲250  MeV, by analyzing data from the interaction of 2.84×1011 100-GeV electrons with an active thick target and searching for missing-energy events. In this work, by including A′ production via secondary positron annihilation with atomic electrons, we extend these limits in the 200–300 MeV region by almost an order of magnitude, touching for the first time the dark matter relic density constrained parameter combinations. Our new results demonstrate the power of the resonant annihilation process in missing energy dark-matter searches, paving the road to future dedicated e+ beam efforts.The current most stringent constraints for the existence of sub-GeV dark matter coupling to Standard Model via a massive vector boson AA^\prime were set by the NA64 experiment for the mass region mA250m_{A^\prime}\lesssim 250 MeV, by analyzing data from the interaction of 2.8410112.84\cdot10^{11} 100-GeV electrons with an active thick target and searching for missing-energy events. In this work, by including AA^\prime production via secondary positron annihilation with atomic electrons, we extend these limits in the 200200-300300 MeV region by almost an order of magnitude, touching for the first time the dark matter relic density constrained parameter combinations. Our new results demonstrate the power of the resonant annihilation process in missing energy dark-matter searches, paving the road to future dedicated e+e^+ beam efforts

    Improved limits on a hypothetical X(16.7) boson and a dark photon decaying into e+ee^+e^- pairs

    Get PDF
    The improved results on a direct search for a new X(16.7  MeV) boson that could explain the anomalous excess of e+e- pairs observed in the decays of the excited Be*8 nuclei (“Berillium or X17 anomaly”) are reported. Interestingly, new recent results in the nuclear transitions of another nucleus, He4, seems to support this anomaly spurring the need for an independent measurement. If the X boson exists, it could be produced in the bremsstrahlung reaction e-Z→e-ZX by a high energy beam of electrons incident on the active target in the NA64 experiment at the CERN Super Proton Synchrotron and observed through its subsequent decay into e+e- pairs. No evidence for such decays was found from the combined analysis of the data samples with total statistics corresponding to 8.4×1010 electrons on target collected in 2017 and 2018. This allows one to set new limits on the X-e- coupling in the range 1.2×10-4≲εe≲6.8×10-4, excluding part of the parameter space favored by the X17 anomaly, and setting new bounds on the mixing strength of photons with dark photons (A′) with a mass ≲24  MeV. For the 2018 run, the setup was optimized to probe the region of parameter space characterized by a large coupling ε. This allowed a significant improvement in sensitivity despite a relatively modest increase in statistics.The improved results on a direct search for a new XX(16.7 MeV) boson which could explain the anomalous excess of e+ee^+e^- pairs observed in the excited 8Be^8Be^* nucleus decays ("Berillium anomaly") are reported. Due to its coupling to electrons, the XX boson could be produced in the bremsstrahlung reaction eZeZXe^-Z\rightarrow e^-ZX by a high-energy beam of electrons incident on active target in the NA64 experiment at the CERN SPS and observed through its subsequent decay into e+ee^+e^- pair. No evidence for such decays was found from the combined analysis of the data samples with total statistics corresponding to 8.4×10108.4 \times 10^{10} electrons on target collected in 2017 and 2018. This allows to set the new limits on the XeX-e^- coupling in the range 1.2×104<ϵe<6.8×1041.2 \times 10^{-4}\underset{\sim}{<}\epsilon_e \underset{\sim}{<}6.8\times 10^{-4}, excluding part of the parameter space favored by the Berillium anomaly. We also set new bounds on the mixing strength of photons with dark photons (AA') from non-observation of the decay Ae+eA' \to e^+e^- of the bremsstrahlung AA' with a mass below 24 MeV

    Exploration of the Muon g2g-2 and Light Dark Matter explanations in NA64 with the CERN SPS high energy muon beam

    No full text
    We report on a search for a new ZZ' (LμLτL_\mu-L_\tau) vector boson performed at the NA64 experiment employing a high energy muon beam and a missing energy-momentum technique. Muons from the M2 beamline at the CERN Super Proton Synchrotron with a momentum of 160 GeV/c are directed to an active target. A signal event is a single scattered muon with momentum << 80 GeV/c in the final state, accompanied by missing energy, i.e. no detectable activity in the downstream calorimeters. For a total statistic of (1.98±0.02)×1010(1.98\pm0.02)\times10^{10} muons on target, no event is observed in the expected signal region. This allows us to set new limits on part of the remaining (mZ, gZ)(m_{Z'},\ g_{Z'}) parameter space which could provide an explanation for the muon (g2)μ(g-2)_\mu anomaly. Additionally, our study excludes part of the parameter space suggested by the thermal Dark Matter relic abundance. Our results pave the way to explore Dark Sectors and light Dark Matter with muon beams in a unique and complementary way to other experiments.We report on a search for a new ZZ' (LμLτL_\mu-L_\tau) vector boson performed at the NA64 experiment employing a high energy muon beam and a missing energy-momentum technique. Muons from the M2 beamline at the CERN Super Proton Synchrotron with a momentum of 160 GeV/c are directed to an active target. A signal event is a single scattered muon with momentum << 80 GeV/c in the final state, accompanied by missing energy, i.e. no detectable activity in the downstream calorimeters. For a total statistic of (1.98±0.02)×1010(1.98\pm0.02)\times10^{10} muons on target, no event is observed in the expected signal region. This allows us to set new limits on part of the remaining (mZ, gZ)(m_{Z'},\ g_{Z'}) parameter space which could provide an explanation for the muon (g2)μ(g-2)_\mu anomaly. Additionally, our study excludes part of the parameter space suggested by the thermal Dark Matter relic abundance. Our results pave the way to explore Dark Sectors and light Dark Matter with muon beams in a unique and complementary way to other experiments

    Search for Light Dark Matter with NA64 at CERN

    No full text
    Thermal dark matter models with particle χ masses below the electroweak scale can provide an explanation for the observed relic dark matter density. This would imply the existence of a new feeble interaction between the dark and ordinary matter. We report on a new search for the sub-GeV χ production through the interaction mediated by a new vector boson, called the dark photon A′, in collisions of 100 GeV electrons with the active target of the NA64 experiment at the CERN SPS. With 9.37×1011 electrons on target collected during 2016–2022 runs NA64 probes for the first time the well-motivated region of parameter space of benchmark thermal scalar and fermionic dark matter models. No evidence for dark matter production has been found. This allows us to set the most sensitive limits on the A′ couplings to photons for masses mA′≲0.35  GeV, and to exclude scalar and Majorana dark matter with the χ-A′ coupling αD≤0.1 for masses 0.001≲mχ≲0.1  GeV and 3mχ≤mA′.Thermal dark matter models with particle χ\chi masses below the electroweak scale can provide an explanation for the observed relic dark matter density. This would imply the existence of a new feeble interaction between the dark and ordinary matter. We report on a new search for the sub-GeV χ\chi production through the interaction mediated by a new vector boson, called the dark photon AA', in collisions of 100 GeV electrons with the active target of the NA64 experiment at the CERN SPS. With 9.37×10119.37\times10^{11} electrons on target collected during 2016-2022 runs NA64 probes for the first time the well-motivated region of parameter space of benchmark thermal scalar and fermionic dark matter models. No evidence for dark matter production has been found. This allows us to set the most sensitive limits on the AA' couplings to photons for masses mA0.35m_{A'} \lesssim 0.35 GeV, and to exclude scalar and Majorana dark matter with the χA\chi-A' coupling αD0.1\alpha_D \leq 0.1 for masses 0.001mχ0.10.001 \lesssim m_\chi \lesssim 0.1 GeV and 3mχmA3m_\chi \leq m_{A'}

    Probing Light Dark Matter with positron beams at NA64

    No full text
    We present the results of a missing-energy search for Light Dark Matter which has a new interaction with ordinary matter transmitted by a vector boson, called dark photon (AA^\prime). For the first time, this search is performed with a positron beam by using the significantly enhanced production of AA^\prime in the resonant annihilation of positrons with atomic electrons of the target nuclei, followed by the invisible decay of AA^\prime into dark matter. No events were found in the signal region with (10.1±0.1) × 109(10.1 \pm 0.1)~\times~10^{9} positrons on target with 100 GeV energy. This allowed us to set new exclusion limits that, relative to the collected statistics, prove the power of this experimental technique. This measurement is a crucial first step toward a future exploration program with positron beams, whose estimated sensitivity is here presented.We present the results of a missing-energy search for Light Dark Matter which has a new interaction with ordinary matter transmitted by a vector boson, called dark photon AA^\prime. For the first time, this search is performed with a positron beam by using the significantly enhanced production of AA^\prime in the resonant annihilation of positrons with atomic electrons of the target nuclei, followed by the invisible decay of AA^\prime into dark matter. No events were found in the signal region with (10.1±0.1) × 109(10.1 \pm 0.1)~\times~10^{9} positrons on target with 100 GeV energy. This allowed us to set new exclusion limits that, relative to the collected statistics, prove the power of this experimental technique. This measurement is a crucial first step toward a future exploration program with positron beams, whose estimated sensitivity is here presented

    Measurement of the intrinsic hadronic contamination in the NA64<math altimg="si2.svg" display="inline" id="d1e670"><mrow><mo>−</mo><mi>e</mi></mrow></math> high-purity <math altimg="si3.svg" display="inline" id="d1e678"><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>/</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow></math> beam at CERN

    No full text
    In this study, we present the measurement of the intrinsic hadronic contamination at the CERN SPS H4 beamline configured to transport electrons and positrons at 100 GeV/c momentum. The analysis was performed using data collected by the NA64-ee experiment in 2022. Our study is based on calorimetric measurements, exploiting the different interaction mechanisms of electrons and hadrons in the NA64-ECAL and NA64-HCAL detectors. We determined the intrinsic hadronic contamination by comparing the results obtained using the nominal electron/positron beamline configuration with those obtained in a dedicated setup, in which only hadrons impinged on the detector. The significant differences in the experimental signatures of electrons and hadrons motivated our approach, resulting in a small and well-controlled systematic uncertainty for the measurement. Our study allowed us to precisely determine the intrinsic hadronic contamination, which represents a crucial parameter for the NA64 experiment in which the hadron contaminants may result in non-trivial backgrounds. Moreover, we performed dedicated Monte Carlo simulations for the hadron production induced by the primary T2 target. We found a good agreement between measurements and simulation results, confirming the validity of the applied methodology and our evaluation of the intrinsic hadronic contamination.We present the measurement of the intrinsic hadronic contamination at the CERN SPS H4 beamline configured to transport electrons and positrons at 100 GeV/c. The analysis, performed using data collected by the NA64-e experiment in 2022, is based on calorimetric measurements, exploiting the different interaction mechanisms of electrons and hadrons in the NA64 detector. We determined the contamination by comparing the results obtained using the nominal electron/positron beamline configuration with those from a dedicated setup, in which only hadrons impinged on the detector. We also obtained an estimate of the relative protons, anti-protons and pions yield by exploiting the different absorption probabilities of these particles in matter. We cross-checked our results with a dedicated Monte Carlo simulation for the hadron production at the primary T2 target, finding a good agreement with the experimental measurements.In this study, we present the measurement of the intrinsic hadronic contamination at the CERN SPS H4 beamline configured to transport electrons and positrons at 100 GeV/c momentum. The analysis was performed using data collected by the NA64-ee experiment in 2022. Our study is based on calorimetric measurements, exploiting the different interaction mechanisms of electrons and hadrons in the NA64-ECAL and NA64-HCAL detectors. We determined the intrinsic hadronic contamination by comparing the results obtained using the nominal electron/positron beamline configuration with those obtained in a dedicated setup, in which only hadrons impinged on the detector. The significant differences in the experimental signatures of electrons and hadrons motivated our approach, resulting in a small and well-controlled systematic uncertainty for the measurement. Our study allowed us to precisely determine the intrinsic hadronic contamination, which represents a crucial parameter for the NA64 experiment in which the hadron contaminants may result in non-trivial backgrounds. Moreover, we performed dedicated Monte Carlo simulations for the hadron production induced by the primary T2 target. We found a good agreement between measurements and simulation results, confirming the validity of the applied methodology and our evaluation of the intrinsic hadronic contamination
    corecore