4 research outputs found

    A modified figure of merit for pyroelectric energy harvesting

    Get PDF
    This paper reports a new figure of merit for the selection of pyroelectric materials for thermal energy harvesting applications, for example, when the material is exposed to heat or radiation of a specified power density. The figure of merit put forward and developed is of interest to those selecting materials for the design of thermal harvesting devices or the development of novel ceramic, single-crystal and composite materials for pyroelectric harvesting application

    Phase diagram of the ferroelectric-relaxor (1-x)PbMg(1/3)Nb(2/3)O3-xPbTiO3

    Get PDF
    Synchrotron x-ray powder diffraction measurements have been performed on unpoled ceramic samples of (1-x)PbMg(1/3)Nb(2/3)O3-xPbTiO3 (PMN-xPT) with 30%<= x<= 39% as a function of temperature around the morphotropic phase boundary (MPB), which is the line separating the rhombohedral and tetragonal phases in the phase diagram. The experiments have revealed very interesting features previously unknown in this or related systems. The sharp and well-defined diffraction profiles observed at high and intermediate temperatures in the cubic and tetragonal phases, respectively, are in contrast to the broad features encountered at low temperatures. These peculiar characteristics, which are associated with the monoclinic phase of MC-type previously reported by Kiat et al and Singh et al., can only be interpreted as multiple coexisting structures with MC as the major component. An analysis of the diffraction profiles has allowed us to properly characterize the PMN-xPT phase diagram and to determine the stability region of the monoclinic phase, which extends from x= 31% to x= 37% at 20 K. The complex lansdcape of observed phases points to an energy balance between the different PMN-xPT phases which is intrinsically much more delicate than that of related systems such as PbZr(1-x)TixO3 or (1-x)PbZn(1/3)Nb(1/3)O3-xPbTiO3. These observations are in good accord with an optical study of x= 33% by Xu et al., who observed monoclinic domains with several different polar directions coexisting with rhombohedral domains, in the same single crystal.Comment: REVTeX4, 11 pages, 10 figures embedde

    Picturing the elephant: Giant piezoelectric activity and the monoclinic phases of relaxor-ferroelectric single crystals

    No full text
    corecore