1 research outputs found
Emergence of quasi-metallic state in disordered 2D electron gas due to strong interactions
The interrelation between disorder and interactions in two dimensional
electron liquid is studied beyond weak coupling perturbation theory. Strong
repulsion significantly reduces the electronic density of states on the Fermi
level. This makes the electron liquid more rigid and strongly suppresses
elastic scattering off impurities. As a result the weak localization, although
ultimately present at zero temperature and infinite sample size, is
unobservable at experimentally accessible temperature at high enough densities.
Therefore practically there exists a well defined metallic state. We study
diffusion of electrons in this state and find that the diffusion pole is
significantly modified due to "mixture" with static photons similar to the
Anderson - Higgs mechanism in superconductivity. As a result several effects
stemming from the long range nature of diffusion like the Aronov - Altshuler
logarithmic corrections to conductivity are less pronounced.Comment: to appear in Phys. Rev.