1,204 research outputs found
Effects of impurity scattering on electron-phonon resonances in semiconductor superlattice high-field transport
A non-equilibrium Green's function method is applied to model high-field
quantum transport and electron-phonon resonances in semiconductor
superlattices. The field-dependent density of states for elastic (impurity)
scattering is found non-perturbatively in an approach which can be applied to
both high and low electric fields. I-V curves, and specifically electron-phonon
resonances, are calculated by treating the inelastic (LO phonon) scattering
perturbatively. Calculations show how strong impurity scattering suppresses the
electron-phonon resonance peaks in I-V curves, and their detailed sensitivity
to the size, strength and concentration of impurities.Comment: 7 figures, 1 tabl
Very large dielectric response of thin ferroelectric films with the dead layers
We study the dielectric response of ferroelectric (FE) thin films with "dead"
dielectric layer at the interface with electrodes. The domain structure
inevitably forms in the FE film in presence of the dead layer. As a result, the
effective dielectric constant of the capacitor increases
abruptly when the dead layer is thin and, consequently, the pattern of
180-degree domains becomes "soft". We compare the exact results for this
problem with the description in terms of a popular "capacitor" model, which is
shown to give qualitatively incorrect results. We relate the present results to
fatigue observed in thin ferroelectric films.Comment: 5 pages, REVTeX 3.1 with one eps-figure. A note added that the linear
response is not changed by electromechanical effect. To appear in Phys. Rev.
Nuclear Spin-Isospin Correlations, Parity Violation, and the Problem
The strong interaction effects of isospin- and spin-dependent nucleon-nucleon
correlations observed in many-body calculations are interpreted in terms of a
one-pion exchange mechanism. Including such effects in computations of nuclear
parity violating effects leads to enhancements of about 10%. A larger effect
arises from the one-boson exchange nature of the parity non-conserving nucleon-
nucleon interaction, which depends on both weak and strong meson-nucleon
coupling constants. Using values of the latter that are constrained by
nucleon-nucleon phase shifts leads to enhancements of parity violation by
factors close to two. Thus much of previously noticed discrepancies between
weak coupling constants extracted from different experiments can be removed.Comment: 8 pages 2 figures there should have been two figures in v
Two-temperature relaxation and melting after absorption of femtosecond laser pulse
The theory and experiments concerned with the electron-ion thermal relaxation
and melting of overheated crystal lattice constitute the subject of this paper.
The physical model includes two-temperature equation of state, many-body
interatomic potential, the electron-ion energy exchange, electron thermal
conductivity, and optical properties of solid, liquid, and two phase
solid-liquid mixture. Two-temperature hydrodynamics and molecular dynamics
codes are used. An experimental setup with pump-probe technique is used to
follow evolution of an irradiated target with a short time step 100 fs between
the probe femtosecond laser pulses. Accuracy of measurements of reflection
coefficient and phase of reflected probe light are ~1% and \sim 1\un{nm},
respectively. It is found that,
{\it firstly}, the electron-electron collisions make a minor contribution to
a light absorbtion in solid Al at moderate intensities;
{\it secondly}, the phase shift of a reflected probe results from heating of
ion subsystem and kinetics of melting of Al crystal during 0
where is time delay between the pump and probe pulses measured from the
maximum of the pump;
{\it thirdly} the optical response of Au to a pump shows a marked contrast to
that of Al on account of excitation of \textit{d}-electronsComment: 6th International Conference on Photo-Excited Processes and
Applications 9-12 Sep 2008, Sapporo, Japan, http://www.icpepa6.com, the
contributed paper will be published in Applied Surface Science(2009
Levy Anomalous Diffusion and Fractional Fokker--Planck Equation
We demonstrate that the Fokker-Planck equation can be generalized into a
'Fractional Fokker-Planck' equation, i.e. an equation which includes fractional
space differentiations, in order to encompass the wide class of anomalous
diffusions due to a Levy stable stochastic forcing. A precise determination of
this equation is obtained by substituting a Levy stable source to the classical
gaussian one in the Langevin equation. This yields not only the anomalous
diffusion coefficient, but a non trivial fractional operator which corresponds
to the possible asymmetry of the Levy stable source. Both of them cannot be
obtained by scaling arguments. The (mono-) scaling behaviors of the Fractional
Fokker-Planck equation and of its solutions are analysed and a generalization
of the Einstein relation for the anomalous diffusion coefficient is obtained.
This generalization yields a straightforward physical interpretation of the
parameters of Levy stable distributions. Furthermore, with the help of
important examples, we show the applicability of the Fractional Fokker-Planck
equation in physics.Comment: 22 pages; To Appear in Physica
Weakly--exceptional quotient singularities
A singularity is said to be weakly--exceptional if it has a unique purely log
terminal blow up. In dimension , V. Shokurov proved that weakly--exceptional
quotient singularities are exactly those of types , , ,
. This paper classifies the weakly--exceptional quotient singularities
in dimensions and
Charge-Symmetry Violation in Pion Scattering from Three-Body Nuclei
We discuss the experimental and theoretical status of charge-symmetry
violation (CSV) in the elastic scattering of pi+ and pi- on 3H and 3He.
Analysis of the experimental data for the ratios r1, r2, and R at Tpi = 142,
180, 220, and 256 MeV provides evidence for the presence of CSV. We describe
pion scattering from the three-nucleon system in terms of single- and
double-scattering amplitudes. External and internal Coulomb interactions as
well as the Delta-mass splitting are taken into account as sources of CSV.
Reasonable agreement between our theoretical calculations and the experimental
data is obtained for Tpi = 180, 220, and 256 MeV. For these energies, it is
found that the Delta-mass splitting and the internal Coulomb interaction are
the most important contributions for CSV in the three-nucleon system. The CSV
effects are rather sensitive to the choice of pion-nuclear scattering
mechanisms, but at the same time, our theoretical predictions are much less
sensitive to the choice of the nuclear wave function. It is found, however,
that data for r2 and R at Tpi = 142 MeV do not agree with the predictions of
our model, which may indicate that there are additional mechanisms for CSV
which are important only at lower energies.Comment: 26 pages of RevTeX, 16 postscript figure
Classification of K3-surfaces with involution and maximal symplectic symmetry
K3-surfaces with antisymplectic involution and compatible symplectic actions
of finite groups are considered. In this situation actions of large finite
groups of symplectic transformations are shown to arise via double covers of
Del Pezzo surfaces. A complete classification of K3-surfaces with maximal
symplectic symmetry is obtained.Comment: 26 pages; final publication available at http://www.springerlink.co
Color Transparency Effects in Electron Deuteron Interactions at Intermediate Q^2
High momentum transfer electrodisintegration of polarized and unpolarized
deuterium targets, is studied. We show that the importance of final
state interactions-FSI, occuring when a knocked out nucleon interacts with the
other nucleon, depends strongly on the momentum of the spectator nucleon. In
particular, these FSI occur when the essential contributions to the scattering
amplitude arise from internucleon distances . But the absorption
of the high momentum may produce a point like configuration, which
evolves with time. In this case, the final state interactions probe the point
like configuration at the early stage of its evolution. The result is that
significant color transparency effects, which can either enhance or suppress
computed cross sections, are predicted to occur for .Comment: 37 pages LaTex, 12 uuencoded PostScript Figures as separate file, to
be published in Z.Phys.
Multiple (inverse) binomial sums of arbitrary weight and depth and the all-order epsilon-expansion of generalized hypergeometric functions with one half-integer value of parameter
We continue the study of the construction of analytical coefficients of the
epsilon-expansion of hypergeometric functions and their connection with Feynman
diagrams. In this paper, we show the following results:
Theorem A: The multiple (inverse) binomial sums of arbitrary weight and depth
(see Eq. (1.1)) are expressible in terms of Remiddi-Vermaseren functions.
Theorem B: The epsilon expansion of a hypergeometric function with one
half-integer value of parameter (see Eq. (1.2)) is expressible in terms of the
harmonic polylogarithms of Remiddi and Vermaseren with coefficients that are
ratios of polynomials. Some extra materials are available via the www at this
http://theor.jinr.ru/~kalmykov/hypergeom/hyper.htmlComment: 24 pages, latex with amsmath and JHEP3.cls; v2: some typos corrected
and a few references added; v3: few references added
- …