236 research outputs found

    Catalysis with inorganic membranes

    Get PDF
    Catalytic inorganic membranes are among the most challenging and intriguing porous materials. Consisting of a thin film of mesoporous or microporous inorganic material deposited on a macroporous material, catalytic membranes are multifunctional materials that must be engineered for both chemical and physical properties. New approaches to carrying out chemical reactions are possible by tailoring the membrane catalytic activity and selectivity, permselectivity, and other thin film properties. Readers are referred to several recent reviews of inorganic membranes, in particular, Zaspalis and Burggraaf, Armor, Gellings and Bouwmeister, Hsieh, Stoukides, and Tsotsis et al. Inorganic membranes are most conveniently classified according to pore size (see introductory article). Of particular importance is the ratio of the pore size to the molecular mean free path (MFP). Decreasing pore dimensions lead to increased selectivity with corresponding loss of permeability. Macroporous membranes have a pore size much larger than the MFP, leading to molecular (bulk) diffusion or viscous flow. Knudsen diffusion dominates in the mesoporous regime, where the pore size is comparable to the MFP. In addition, surface diffusion of the molecules along the pore walls may contribute, leading to an enhanced flux of the adsorbed species along the walls. The microporous regime is encountered when the pore size is comparable to the molecules. This regime makes possible much higher permselectivities, which depend on both molecular size and specific interactions with the solid. Finally, in dense membranes, molecular transport occurs through a solution-diffusion mechanism, which also involves specific interactions between the solute and membrane

    Interference of two electrons entering a superconductor

    Full text link
    The subgap conductivity of a normal-superconductor (NS) tunnel junction is thought to be due to tunneling of two electrons. There is a strong interference between these two electrons, originating from the spatial phase coherence in the normal metal at a mesoscopic length scale and the intrinsic coherence of the superconductor. We evaluated the interference effect on the transport through an NS junction. We propose the layouts to observe drastic Aharonov-Bohm and Josephson effects.Comment: 8 pages REVTex, [PostScript] figures upon reques

    Three-algebra for supermembrane and two-algebra for superstring

    Full text link
    While string or Yang-Mills theories are based on Lie algebra or two-algebra structure, recent studies indicate that M-theory may require a one higher, three-algebra structure. Here we construct a covariant action for a supermembrane in eleven dimensions, which is invariant under global supersymmetry, local fermionic symmetry and worldvolume diffeomorphism. Our action is classically on-shell equivalent to the celebrated Bergshoeff-Sezgin-Townsend action. However, the novelty is that we spell the action genuinely in terms of Nambu three-brackets: All the derivatives appear through Nambu brackets and hence it manifests the three-algebra structure. Further the double dimensional reduction of our action gives straightforwardly to a type IIA string action featuring two-algebra. Applying the same method, we also construct a covariant action for type IIB superstring, leading directly to the IKKT matrix model.Comment: 1+15 pages, no figure; Refs added, Accepted for publication in JHE

    Universal flow diagram for the magnetoconductance in disordered GaAs layers

    Full text link
    The temperature driven flow lines of the diagonal and Hall magnetoconductance data (G_{xx},G_{xy}) are studied in heavily Si-doped, disordered GaAs layers with different thicknesses. The flow lines are quantitatively well described by a recent universal scaling theory developed for the case of duality symmetry. The separatrix G_{xy}=1 (in units e^2/h) separates an insulating state from a spin-degenerate quantum Hall effect (QHE) state. The merging into the insulator or the QHE state at low temperatures happens along a semicircle separatrix G_{xx}^2+(G_{xy}-1)^2=1 which is divided by an unstable fixed point at (G_{xx},G_{xy})=(1,1).Comment: 10 pages, 5 figures, submitted to Phys. Rev. Let

    Quantum railroads and directed localization at the juncture of quantum Hall systems

    Full text link
    The integer quantum Hall effect (QHE) and one-dimensional Anderson localization (AL) are limiting special cases of a more general phenomenon, directed localization (DL), predicted to occur in disordered one-dimensional wave guides called "quantum railroads" (QRR). Here we explain the surprising results of recent measurements by Kang et al. [Nature 403, 59 (2000)] of electron transfer between edges of two-dimensional electron systems and identify experimental evidence of QRR's in the general, but until now entirely theoretical, DL regime that unifies the QHE and AL. We propose direct experimental tests of our theory.Comment: 11 pages revtex + 3 jpeg figures, to appear in Phys. Rev.

    Mass-Enhanced Fermi Liquid Ground State in Na1.5_{1.5}Co2_2O4_4

    Full text link
    Magnetic, transport, and specific heat measurements have been performed on layered metallic oxide Na1.5_{1.5}Co2_2O4_4 as a function of temperature TT. Below a characteristic temperature TT^*=30-40 K, electrical resistivity shows a metallic conductivity with a T2T^2 behavior and magnetic susceptibility deviates from the Curie-Weiss behavior showing a broad peak at \sim14 K. The electronic specific heat coefficient γ\gamma is \sim60 mJ/molK2^2 at 2 K. No evidence for magnetic ordering is found. These behaviors suggest the formation of mass-enhanced Fermi liquid ground state analogous to that in dd-electron heavy fermion compound LiV2_2O4_4.Comment: 4 pages, 4 figures, to be published in Phys. Rev. B 69 (2004

    Random field sampling for a simplified model of melt-blowing considering turbulent velocity fluctuations

    Full text link
    In melt-blowing very thin liquid fiber jets are spun due to high-velocity air streams. In literature there is a clear, unsolved discrepancy between the measured and computed jet attenuation. In this paper we will verify numerically that the turbulent velocity fluctuations causing a random aerodynamic drag on the fiber jets -- that has been neglected so far -- are the crucial effect to close this gap. For this purpose, we model the velocity fluctuations as vector Gaussian random fields on top of a k-epsilon turbulence description and develop an efficient sampling procedure. Taking advantage of the special covariance structure the effort of the sampling is linear in the discretization and makes the realization possible

    Taking off the square root of Nambu-Goto action and obtaining Filippov-Lie algebra gauge theory action

    Full text link
    We propose a novel prescription to take off the square root of Nambu-Goto action for a p-brane, which generalizes the Brink-Di Vecchia-Howe-Tucker or also known as Polyakov method. With an arbitrary decomposition as d+n=p+1, our resulting action is a modified d-dimensional Polyakov action which is gauged and possesses a Nambu n-bracket squared potential. We first spell out how the (p+1)-dimensional diffeomorphism is realized in the lower dimensional action. Then we discuss a possible gauge fixing of it to a direct product of dd-dimensional diffeomorphism and n-dimensional volume preserving diffeomorphism. We show that the latter naturally leads to a novel Filippov-Lie n-algebra based gauge theory action in d-dimensions.Comment: 1+13 pages, No figure; Expanded, published version. Title change

    Primary stroke prevention worldwide : translating evidence into action

    Get PDF
    Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis ?erimagi? (Poliklinika Glavi?, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo Ant?nio, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Cz?onkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), Jo?o Sargento-Freitas (Centro Hospitalar e Universit?rio de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gon?alves (Hospital S?o Jos? do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurj?ns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gda?sk, Gda?sk, Poland), Kursad Kutluk (Dokuz Eylul University, ?zmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Micha? Maluchnik (Ministry of Health, Warsaw, Poland), Evija Migl?ne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gda?sk, Gda?sk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis Čerimagić (Poliklinika Glavić, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo António, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Członkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), João Sargento-Freitas (Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gonçalves (Hospital São José do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurjāns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gdańsk, Gdańsk, Poland), Kursad Kutluk (Dokuz Eylul University, İzmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Michał Maluchnik (Ministry of Health, Warsaw, Poland), Evija Miglāne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gdańsk, Gdańsk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: VLF declares that the PreventS web app and Stroke Riskometer app are owned and copyrighted by Auckland University of Technology; has received grants from the Brain Research New Zealand Centre of Research Excellence (16/STH/36), Australian National Health and Medical Research Council (NHMRC; APP1182071), and World Stroke Organization (WSO); is an executive committee member of WSO, honorary medical director of Stroke Central New Zealand, and CEO of New Zealand Stroke Education charitable Trust. AGT declares funding from NHMRC (GNT1042600, GNT1122455, GNT1171966, GNT1143155, and GNT1182017), Stroke Foundation Australia (SG1807), and Heart Foundation Australia (VG102282); and board membership of the Stroke Foundation (Australia). SLG is funded by the National Health Foundation of Australia (Future Leader Fellowship 102061) and NHMRC (GNT1182071, GNT1143155, and GNT1128373). RM is supported by the Implementation Research Network in Stroke Care Quality of the European Cooperation in Science and Technology (project CA18118) and by the IRIS-TEPUS project from the inter-excellence inter-cost programme of the Ministry of Education, Youth and Sports of the Czech Republic (project LTC20051). BN declares receiving fees for data management committee work for SOCRATES and THALES trials for AstraZeneca and fees for data management committee work for NAVIGATE-ESUS trial from Bayer. All other authors declare no competing interests. Publisher Copyright: © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseStroke is the second leading cause of death and the third leading cause of disability worldwide and its burden is increasing rapidly in low-income and middle-income countries, many of which are unable to face the challenges it imposes. In this Health Policy paper on primary stroke prevention, we provide an overview of the current situation regarding primary prevention services, estimate the cost of stroke and stroke prevention, and identify deficiencies in existing guidelines and gaps in primary prevention. We also offer a set of pragmatic solutions for implementation of primary stroke prevention, with an emphasis on the role of governments and population-wide strategies, including task-shifting and sharing and health system re-engineering. Implementation of primary stroke prevention involves patients, health professionals, funders, policy makers, implementation partners, and the entire population along the life course.publishersversionPeer reviewe
    corecore