61 research outputs found
Experience with Dilute Chemical Decontamination in Indian Pressurized Heavy Water Reactors
AbstractDilute Chemical Decontamination (DCD) process has been used in several full system and components of nuclear coolant systems to effectively remove the radioactive contaminants that causes radiation field and consequent MANREM problem. The DCD process uses chemicals in very low concentrations (millimolar) and dissolves the oxide film along with the activity incorporated in the oxide film. In DCD process operated under the regenerative mode, the chemical formulation spent in the process of oxide dissolution is replenished by passing through cation exchange columns. Finally, after achieving sufficient decontamination of the system/component, the added decontamination chemicals along with the activities and metal ions released during the process are removed by mixed bed ion exchange columns and the system is restored to normal operating condition in a few days time. In PHWRs, the regenerative DCD process is applied for full primary coolant system decontamination. The chemicals are added directly to the heavy water coolant with the fuel in the core. In Indian PHWRs (MAPS#1&2, RAPS#1&2, NAPS#1&2 and KAPS#1), the process has been applied eleven times. A chemical formulation based on NTA, Citric acid and Ascorbic acid has been applied seven times with good results. Decontamination factors in the range 2-30 have been obtained in different components with good MANREM savings in the subsequent maintenance works.Efforts are on to modify the process to take care of the challenges posed by antimony isotopes. An inhibitor (Rodine-92B) based process was successfully tested in NAPS#2 for removing antimony isotopes (122Sb and 124Sb). Further refining of the antimony removal process is being worked out. Similarly, the process is being modified to effectively remove the hotspot causing stellite particles in the moderator system of PHWRs. A permanganate based process has been developed and tested in several adjustor rod drive mechanisms in KAPS and NAPS. The experience of applying/testing the DCD process in the Indian nuclear reactors is described in this paper
Further constraints on electron acceleration in solar noise storms
We reexamine the energetics of nonthermal electron acceleration in solar
noise storms. A new result is obtained for the minimum nonthermal electron
number density required to produce a Langmuir wave population of sufficient
intensity to power the noise storm emission. We combine this constraint with
the stochastic electron acceleration formalism developed by Subramanian &
Becker (2005) to derive a rigorous estimate for the efficiency of the overall
noise storm emission process, beginning with nonthermal electron acceleration
and culminating in the observed radiation. We also calculate separate
efficiencies for the electron acceleration -- Langmuir wave generation stage
and the Langmuir wave -- noise storm production stage. In addition, we obtain a
new theoretical estimate for the energy density of the Langmuir waves in noise
storm continuum sources.Comment: Accepted for publication in Solar Physic
Magnetic fields in the early universe in the string approach to MHD
There is a reformulation of magnetohydrodynamics in which the fundamental
dynamical quantities are the positions and velocities of the lines of magnetic
flux in the plasma, which turn out to obey equations of motion very much like
ideal strings. We use this approach to study the evolution of a primordial
magnetic field generated during the radiation-dominated era in the early
Universe. Causality dictates that the field lines form a tangled random
network, and the string-like equations of motion, plus the assumption of
perfect reconnection, inevitably lead to a self-similar solution for the
magnetic field power spectrum. We present the predicted form of the power
spectrum, and discuss insights gained from the string approximation, in
particular the implications for the existence or not of an inverse cascade.Comment: 12 pages, 2 figure
Sugars of pearl millet [Pennisetum americanum (L.) Leeke] grains
The sugars in the grains of nine pearl millet cultivars were fractionated through a Biogel column. Five different sugars‘(stachyose, raffinose, sucrose, glucose, and fructose) were identified. Sucrose was predominant in all the cultivars. Raffinose content was high as compared to other cereals, and maltose was absen
Spatio temporal influence of isoflavonoids on bacterial diversity in the soybean rhizosphere
High bacterial density and diversity near plant roots has been attributed to rhizodeposit compounds that serve as both energy sources and signal molecules. However, it is unclear if and how specific rhizodeposit compounds influence bacterial diversity. We silenced the biosynthesis of isoflavonoids, a major component of soybean rhizodeposits, using RNA interference in hairy-root composite plants, and examined changes in rhizosphere bacteriome diversity. We used successive sonication to isolate soil fractions from different rhizosphere zones at two different time points and analyzed denaturing gradient gel electrophoresis profiles of 16S ribosomal RNA gene amplicons. Extensive diversity analysis of the resulting spatio temporal profiles of soybean bacterial communities indicated that, indeed, isoflavonoids significantly influenced soybean rhizosphere bacterial diversity. Our results also suggested a temporal gradient effect of rhizodeposit isoflavonoids on the rhizosphere. However, the hairy-root transformation process itself significantly altered rhizosphere bacterial diversity, necessitating appropriate additional controls. Gene silencing in hairy-root composite plants combined with successive sonication is a useful tool to determine the spatio temporal effect of specific rhizodeposit compounds on rhizosphere microbial communities.http://apsjournals.apsnet.org/loi/mpmi2016-01-31hb201
Probing the Role of Magnetic-Field Variations in NOAA AR 8038 in Producing Solar Flare and CME on 12 May 1997
We carried out a multi-wavelength study of a CME and a medium-size 1B/C1.3
flare occurring on 12 May 1997. We present the investigation of magnetic-field
variations in the NOAA Active Region 8038 which was observed on the Sun during
7--16 May 1997. Analyses of H{\alpha} filtergrams and MDI/SOHO magnetograms
revealed continual but discrete surge activity, and emergence and cancellation
of flux in this active region. The movie of these magnetograms revealed two
important results that the major opposite polarities of pre-existing region as
well as in the emerging flux region (EFR) were approaching towards each other
and moving magnetic features (MMF) were ejecting out from the major north
polarity at a quasi-periodicity of about ten hrs during 10--13 May 1997. These
activities were probably caused by the magnetic reconnection in the lower
atmosphere driven by photospheric convergence motions, which were evident in
magnetograms. The magnetic field variations such as flux, gradient, and sunspot
rotation revealed that free energy was slowly being stored in the corona. The
slow low-layer magnetic reconnection may be responsible for this storage and
the formation of a sigmoidal core field or a flux rope leading to the eventual
eruption. The occurrence of EUV brightenings in the sigmoidal core field prior
to the rise of a flux rope suggests that the eruption was triggered by the
inner tether-cutting reconnection, but not the external breakout reconnection.
An impulsive acceleration revealed from fast separation of the H{\alpha}
ribbons of the first 150 seconds suggests the CME accelerated in the inner
corona, which is consistent with the temporal profile of the reconnection
electric field. In conclusion, we propose a qualitative model in view of
framework of a solar eruption involving, mass ejections, filament eruption,
CME, and subsequent flare.Comment: 8 figures, accepted for publication in Solar Physic
Non-thermal processes in cosmological simulations
Non-thermal components are key ingredients for understanding clusters of
galaxies. In the hierarchical model of structure formation, shocks and
large-scale turbulence are unavoidable in the cluster formation processes.
Understanding the amplification and evolution of the magnetic field in galaxy
clusters is necessary for modelling both the heat transport and the dissipative
processes in the hot intra-cluster plasma. The acceleration, transport and
interactions of non-thermal energetic particles are essential for modelling the
observed emissions. Therefore, the inclusion of the non-thermal components will
be mandatory for simulating accurately the global dynamical processes in
clusters. In this review, we summarise the results obtained with the
simulations of the formation of galaxy clusters which address the issues of
shocks, magnetic field, cosmic ray particles and turbulence.Comment: 27 pages, 16 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 15; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
- …