43 research outputs found

    On role of symmetries in Kelvin wave turbulence

    Full text link
    E.V. Kozik and B.V. Svistunov (KS) paper "Symmetries and Interaction Coefficients of Kelvin waves", arXiv:1006.1789v1, [cond-mat.other] 9 Jun 2010, contains a comment on paper "Symmetries and Interaction coefficients of Kelvin waves", V. V. Lebedev and V. S. L'vov, arXiv:1005.4575, 25 May 2010. It relies mainly on the KS text "Geometric Symmetries in Superfluid Vortex Dynamics}", arXiv:1006.0506v1 [cond-mat.other] 2 Jun 2010. The main claim of KS is that a symmetry argument prevents linear in wavenumber infrared asymptotics of the interaction vertex and thereby implies locality of the Kelvin wave spectrum previously obtained by these authors. In the present note we reply to their arguments. We conclude that there is neither proof of locality nor any refutation of the possibility of linear asymptotic behavior of interaction vertices in the texts of KS

    Symmetries and Interaction coefficients of Kelvin waves

    Full text link
    We considered symmetry restriction on the interaction coefficients of Kelvin waves and demonstrated that linear in small wave vector asymptotic is not forbidden, as one can expect by naive reasoning.Comment: 4 pages, submitted to J. of Low Temp. Phy

    Fluctuation-response relation in turbulent systems

    Full text link
    We address the problem of measuring time-properties of Response Functions (Green functions) in Gaussian models (Orszag-McLaughin) and strongly non-Gaussian models (shell models for turbulence). We introduce the concept of {\it halving time statistics} to have a statistically stable tool to quantify the time decay of Response Functions and Generalized Response Functions of high order. We show numerically that in shell models for three dimensional turbulence Response Functions are inertial range quantities. This is a strong indication that the invariant measure describing the shell-velocity fluctuations is characterized by short range interactions between neighboring shells

    Strong Universality in Forced and Decaying Turbulence

    Full text link
    The weak version of universality in turbulence refers to the independence of the scaling exponents of the nnth order strcuture functions from the statistics of the forcing. The strong version includes universality of the coefficients of the structure functions in the isotropic sector, once normalized by the mean energy flux. We demonstrate that shell models of turbulence exhibit strong universality for both forced and decaying turbulence. The exponents {\em and} the normalized coefficients are time independent in decaying turbulence, forcing independent in forced turbulence, and equal for decaying and forced turbulence. We conjecture that this is also the case for Navier-Stokes turbulence.Comment: RevTex 4, 10 pages, 5 Figures (included), 1 Table; PRE, submitte

    Comment on "Symmetries and Interaction Coefficients of Kelvin waves" [arXiv:1005.4575] by Lebedev and L'vov

    Get PDF
    We comment on the claim by Lebedev and L'vov [arXiv:1005.4575] that the symmetry with respect to a tilt of a quantized vortex line does not yet prohibit coupling between Kelvin waves and the large-scale slope of the line. Ironically, the counterexample of an effective scattering vertex in the local induction approximation (LIA) attempted by Lebedev and L'vov invalidates their logic all by itself being a notoriously known example of how symmetries impose stringent constraints on kelvon kinetics---not only the coupling in question but the kinetics in general are absent within LIA. We further explain that the mistake arises from confusing symmetry properties of a specific mathematical representation in terms of the canonical vortex position field w(z) = x(z) + iy(z), which explicitly breaks the tilt symmetry due to an arbitrary choice of the z-axis, with those of the real physical system recovered in final expressions.Comment: comment on arXiv:1005.4575, version accepted in JLTP with minimal changes: abstract adde

    Anisotropy in Homogeneous Rotating Turbulence

    Full text link
    The effective stress tensor of a homogeneous turbulent rotating fluid is anisotropic. This leads us to consider the most general axisymmetric four-rank ``viscosity tensor'' for a Newtonian fluid and the new terms in the turbulent effective force on large scales that arise from it, in addition to the microscopic viscous force. Some of these terms involve couplings to vorticity and others are angular momentum non conserving (in the rotating frame). Furthermore, we explore the constraints on the response function and the two-point velocity correlation due to axisymmetry. Finally, we compare our viscosity tensor with other four-rank tensors defined in current approaches to non-rotating anisotropic turbulence.Comment: 14 pages, RevTe

    Drag Reduction by Polymers in Turbulent Channel Flows: Energy Redistribution Between Invariant Empirical Modes

    Full text link
    We address the phenomenon of drag reduction by dilute polymeric additive to turbulent flows, using Direct Numerical Simulations (DNS) of the FENE-P model of viscoelastic flows. It had been amply demonstrated that these model equations reproduce the phenomenon, but the results of DNS were not analyzed so far with the goal of interpreting the phenomenon. In order to construct a useful framework for the understanding of drag reduction we initiate in this paper an investigation of the most important modes that are sustained in the viscoelastic and Newtonian turbulent flows respectively. The modes are obtained empirically using the Karhunen-Loeve decomposition, allowing us to compare the most energetic modes in the viscoelastic and Newtonian flows. The main finding of the present study is that the spatial profile of the most energetic modes is hardly changed between the two flows. What changes is the energy associated with these modes, and their relative ordering in the decreasing order from the most energetic to the least. Modes that are highly excited in one flow can be strongly suppressed in the other, and vice versa. This dramatic energy redistribution is an important clue to the mechanism of drag reduction as is proposed in this paper. In particular there is an enhancement of the energy containing modes in the viscoelastic flow compared to the Newtonian one; drag reduction is seen in the energy containing modes rather than the dissipative modes as proposed in some previous theories.Comment: 11 pages, 13 figures, included, PRE, submitted, REVTeX

    Active and Passive Fields in Turbulent Transport: the Role of Statistically Preserved Structures

    Full text link
    We have recently proposed that the statistics of active fields (which affect the velocity field itself) in well-developed turbulence are also dominated by the Statistically Preserved Structures of auxiliary passive fields which are advected by the same velocity field. The Statistically Preserved Structures are eigenmodes of eigenvalue 1 of an appropriate propagator of the decaying (unforced) passive field, or equivalently, the zero modes of a related operator. In this paper we investigate further this surprising finding via two examples, one akin to turbulent convection in which the temperature is the active scalar, and the other akin to magneto-hydrodynamics in which the magnetic field is the active vector. In the first example, all the even correlation functions of the active and passive fields exhibit identical scaling behavior. The second example appears at first sight to be a counter-example: the statistical objects of the active and passive fields have entirely different scaling exponents. We demonstrate nevertheless that the Statistically Preserved Structures of the passive vector dominate again the statistics of the active field, except that due to a dynamical conservation law the amplitude of the leading zero mode cancels exactly. The active vector is then dominated by the sub-leading zero mode of the passive vector. Our work thus suggests that the statistical properties of active fields in turbulence can be understood with the same generality as those of passive fields.Comment: 13 pages, 13 figures, submitted to Phys. Rev.

    Intermittency in Turbulence: computing the scaling exponents in shell models

    Get PDF
    We discuss a stochastic closure for the equation of motion satisfied by multi-scale correlation functions in the framework of shell models of turbulence. We give a systematic procedure to calculate the anomalous scaling exponents of structure functions by using the exact constraints imposed by the equation of motion. We present an explicit calculation for fifth order scaling exponent at varying the free parameter entering in the non-linear term of the model. The same method applied to the case of shell models for Kraichnan passive scalar provides a connection between the concept of zero-modes and time-dependent cascade processes.Comment: 12 pages, 5 eps figure

    Identification of Kelvin waves: numerical challenges

    Full text link
    Kelvin waves are expected to play an essential role in the energy dissipation for quantized vortices. However, the identification of these helical distortions is not straightforward, especially in case of vortex tangle. Here we review several numerical methods that have been used to identify Kelvin waves within the vortex filament model. We test their validity using several examples and estimate whether these methods are accurate enough to verify the correct Kelvin spectrum. We also illustrate how the correlation dimension is related to different Kelvin spectra and remind that the 3D energy spectrum E(k) takes the form 1/k in the high-k region, even in the presence of Kelvin waves.Comment: 6 pages, 5 figures. The final publication is available at http://www.springerlink.co
    corecore