35 research outputs found

    Threshold Corrections and Gauge Symmetry in Twisted Superstring Models

    Get PDF
    Threshold corrections to the running of gauge couplings are calculated for superstring models with free complex world sheet fermions. For two N=1 SU(2)Ă—U(1)5SU(2)\times U(1)^5 models, the threshold corrections lead to a small increase in the unification scale. Examples are given to illustrate how a given particle spectrum can be described by models with different boundary conditions on the internal fermions. We also discuss how complex twisted fermions can enhance the symmetry group of an N=4 SU(3)Ă—U(1)Ă—U(1)SU(3)\times U(1)\times U(1) model to the gauge group SU(3)Ă—SU(2)Ă—U(1)SU(3)\times SU(2)\times U(1). It is then shown how a mixing angle analogous to the Weinberg angle depends on the boundary conditions of the internal fermions.Comment: easier to Tex version, figures to be sent separatel

    String-Loop Corrected Magnetic Black Holes

    Full text link
    We discuss the form of the string-loop-corrected effective action obtained by compactification of the heterotic string theory on the manifold K3Ă—T2K3\times T^2 or on its orbifold limit and the loop-corrected magnetic black hole solutions of the equations of motion. Effective 4D theory has N=2 local supersymmetry. Using the string-loop-corrected prepotential of the N=2 supersymmetric theory, which receives corrections only from the string world sheets of torus topology, we calculate the loop corrections to the tree-level gauge couplings and solve the loop-corrected equations of motion. At the string-tree level, the effective gauge couplings decrease at small distances from the origin, and in this region string-loop corrections to the gauge couplings become important. A possibility of smearing the singularity of the tree-level supersymmetric solution with partially broken supersymmetry by quantum corrections is discussed.Comment: Improved version. Mixing of the dilaton with other moduli properly taken into account. Explanatory notes adde

    Imprints of Short Distance Physics On Inflationary Cosmology

    Get PDF
    We analyze the impact of certain modifications to short distance physics on the inflationary perturbation spectrum. For the specific case of power-law inflation, we find distinctive -- and possibly observable -- effects on the spectrum of density perturbations.Comment: Revtex 4, 3 eps figs, 4 page

    Grand Unification with Three Generations in Free Fermionic String Models

    Get PDF
    We examine the problem of constructing three generation free fermionic string models with grand unified gauge groups. We attempt the construction of GĂ—GG\times G models, where GG is a grand unified group realized at level 1. This structure allows those Higgs representations to appear which are necessary to break the symmetry down to the standard model gauge group. For G=SO(10)G=SO(10), we find only models with an even number of generations. However, for G=SU(5)G=SU(5) we find a number of 3 generation models.Comment: 22 pages, latex. References added to original versio

    A generic estimate of trans-Planckian modifications to the primordial power spectrum in inflation

    Get PDF
    We derive a general expression for the power spectra of scalar and tensor fluctuations generated during inflation given an arbitrary choice of boundary condition for the mode function at a short distance. We assume that the boundary condition is specified at a short-distance cutoff at a scale MM which is independent of time. Using a particular prescription for the boundary condition at momentum p=Mp = M, we find that the modulation to the power spectra of density and gravitational wave fluctuations is of order (H/M)(H/M), where HH is the Hubble parameter during inflation, and we argue that this behavior is generic, although by no means inevitable. With fixed boundary condition, we find that the shape of the modulation to the power spectra is determined entirely by the deviation of the background spacetime from the de Sitter limit.Comment: 15 pages (RevTeX), 2 figure

    Perturbative Computation of the Gluonic Effective Action via Polyaokov's World-Line Path Integral

    Full text link
    The Polyakov world-line path integral describing the propagation of gluon field quanta is constructed by employing the background gauge fixing method and is subsequently applied to analytically compute the divergent terms of the one (gluonic) loop effective action to fourth order in perturbation theory. The merits of the proposed approach is that, to a given order, it reduces to performing two integrations, one over a set of Grassmann and one over a set of Feynman-type parameters through which one manages to accomodate all Feynman diagrams entering the computation at once.Comment: 21 page

    String Universality

    Get PDF
    If there is a single underlying "theory of everything" which in some limits of its "moduli space" reduces to the five weakly coupled string theories in 10D, and 11D SUGRA, then it is possible that all six of them have some common domain of validity and that they are in the same universality class, in the sense that the 4D low energy physics of the different theories is the same. We call this notion String Universality. This suggests that the true vacuum of string theory is in a region of moduli space equally far (in some sense) from all perturbative theories, most likely around the self-dual point with respect to duality symmetries connecting them. We estimate stringy non-perturbative effects from wrapped brane instantons in each perturbative theory, show how they are related by dualities, and argue that they are likely to lead to moduli stabilization only around the self-dual point. We argue that moduli stabilization should occur near the string scale, and SUSY breaking should occur at a much lower intermediate scale, and that it originates from different sources. We discuss the problems of moduli stabilization and SUSY breaking in currently popular scenarios, explain why these problems are generic, and discuss how our scenario can evade them. We show that String Universality is not inconsistent with phenomenology but that it is in conflict with some popular versions of brane world scenarios.Comment: 48 pages, 1 figure; one reference adde

    Theory-Motivated Benchmark Models and Superpartners at the Tevatron

    Get PDF
    Recently published benchmark models have contained rather heavy superpartners. To test the robustness of this result, several benchmark models have been constructed based on theoretically well-motivated approaches, particularly string-based ones. These include variations on anomaly and gauge-mediated models, as well as gravity mediation. The resulting spectra often have light gauginos that are produced in significant quantities at the Tevatron collider, or will be at a 500 GeV linear collider. The signatures also provide interesting challenges for the LHC. In addition, these models usually account for electroweak symmetry breaking with relatively less fine-tuning than previous benchmark models.Comment: 44 pages, 4 figures; some typos corrected. Revisions reflect published versio

    On the Possibility of Optical Unification in Heterotic Strings

    Get PDF
    Recently J. Giedt discussed a mechanism, entitled optical unification, whereby string scale unification is facilitated via exotic matter with intermediate scale mass. This mechanism guarantees that a virtual MSSM unification below the string scale is extrapolated from the running of gauge couplings upward from M_Z^o when an intermediate scale desert is assumed. In this letter we explore the possibility of optical unification within the context of weakly coupled heterotic strings. In particular, we investigate this for models of free fermionic construction containing the NAHE set of basis vectors. This class is of particular interest for optical unification, because it provides a standard hypercharge embedding within SO(10), giving the standard k_Y = 5/3 hypercharge level, which was shown necessary for optical unification. We present a NAHE model for which the set of exotic SU(3)_C triplet/anti-triplet pairs, SU(2)_L doublets, and non-Abelian singlets with hypercharge offers the possibility of optical unification. Whether this model can realize optical unification is conditional upon these exotics not receiving Fayet-Iliopoulos (FI) scale masses when a flat direction of scalar vacuum expectation values is non-perturbatively chosen to cancel the FI D-term, xi, generated by the anomalous U(1)-breaking Green-Schwarz-Dine-Seiberg-Wittten mechanism. A study of perturbative flat directions and their phenomenological implications for this model is underway. This paper is a product of the NFS Research Experiences for Undergraduates and the NSF High School Summer Science Research programs at Baylor University.Comment: 16 pages. Standard Late

    Regularisation Techniques for the Radiative Corrections of Wilson lines and Kaluza-Klein states

    Full text link
    Within an effective field theory framework we compute the most general structure of the one-loop corrections to the 4D gauge couplings in one- and two-dimensional orbifold compactifications with non-vanishing constant gauge background (Wilson lines). Although such models are non-renormalisable, we keep the analysis general by considering the one-loop corrections in three regularisation schemes: dimensional regularisation (DR), Zeta-function regularisation (ZR) and proper-time cut-off regularisation (PT). The relations among the results obtained in these schemes are carefully addressed. With minimal re-definitions of the parameters involved, the results obtained for the radiative corrections can be applied to most orbifold compactifications with one or two compact dimensions. The link with string theory is discussed. We mention a possible implication for the gauge couplings unification in such models.Comment: 37 pages, 1 Figure, LaTeX; minor correction
    corecore