6 research outputs found
Dynamic Evolution Model of Isothermal Voids and Shocks
We explore self-similar hydrodynamic evolution of central voids embedded in
an isothermal gas of spherical symmetry under the self-gravity. More
specifically, we study voids expanding at constant radial speeds in an
isothermal gas and construct all types of possible void solutions without or
with shocks in surrounding envelopes. We examine properties of void boundaries
and outer envelopes. Voids without shocks are all bounded by overdense shells
and either inflows or outflows in the outer envelope may occur. These
solutions, referred to as type void solutions, are further
divided into subtypes and
according to their characteristic behaviours across the sonic critical line
(SCL). Void solutions with shocks in envelopes are referred to as type
voids and can have both dense and quasi-smooth edges.
Asymptotically, outflows, breezes, inflows, accretions and static outer
envelopes may all surround such type voids. Both cases of
constant and varying temperatures across isothermal shock fronts are analyzed;
they are referred to as types and
void shock solutions. We apply the `phase net matching procedure' to construct
various self-similar void solutions. We also present analysis on void
generation mechanisms and describe several astrophysical applications. By
including self-gravity, gas pressure and shocks, our isothermal self-similar
void (ISSV) model is adaptable to various astrophysical systems such as
planetary nebulae, hot bubbles and superbubbles in the interstellar medium as
well as supernova remnants.Comment: 24 pages, 13 figuers, accepted by ApS
A New Computational Fluid Dynamics Code I: Fyris Alpha
A new hydrodynamics code aimed at astrophysical applications has been
developed. The new code and algorithms are presented along with a comprehensive
suite of test problems in one, two, and three dimensions.
The new code is shown to be robust and accurate, equalling or improving upon
a set of comparison codes. Fyris Alpha will be made freely available to the
scientific community.Comment: 59 pages, 27 figures For associated code see
http://www.mso.anu.edu.au/fyri
Wind-Blown Bubbles around Evolved Stars
Most stars will experience episodes of substantial mass loss at some point in
their lives. For very massive stars, mass loss dominates their evolution,
although the mass loss rates are not known exactly, particularly once the star
has left the main sequence. Direct observations of the stellar winds of massive
stars can give information on the current mass-loss rates, while studies of the
ring nebulae and HI shells that surround many Wolf-Rayet (WR) and luminous blue
variable (LBV) stars provide information on the previous mass-loss history. The
evolution of the most massive stars, (M > 25 solar masses), essentially follows
the sequence O star to LBV or red supergiant (RSG) to WR star to supernova. For
stars of mass less than 25 solar masses there is no final WR stage. During the
main sequence and WR stages, the mass loss takes the form of highly supersonic
stellar winds, which blow bubbles in the interstellar and circumstellar medium.
In this way, the mechanical luminosity of the stellar wind is converted into
kinetic energy of the swept-up ambient material, which is important for the
dynamics of the interstellar medium. In this review article, analytic and
numerical models are used to describe the hydrodynamics and energetics of
wind-blown bubbles. A brief review of observations of bubbles is given, and the
degree to which theory is supported by observations is discussed.Comment: To be published as a chapter in 'Diffuse Matter from Star Forming
Regions to Active Galaxies' - A volume Honouring John Dyson. Eds. T. W.
Harquist, J. M. Pittard and S. A. E. G. Falle. 22 pages, 12 figure