5 research outputs found

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Screening of Bauhinia purpurea Linn. for analgesic and anti-inflammatory activities

    No full text
    Objectives: Ethanol extract of the stem of Bauhinia purpurea Linn. was subjected to analgesic and anti-inflammatory activities in animal models. Materials and Methods: Albino Wistar rats and mice were the experimental animals respectively. Different CNS depressant paradigms like analgesic activity (determined by Eddy′s hot plate method and acetic acid writhing method) and anti-inflammatory activity determined by carrageenan induced paw edema using plethysmometer in albino rats) were carried out, following the intra-peritoneal administration of ethanol extract of Bauhinia purpurea Linn. (BP) at the dose level of 50mg/kg and 100mg/kg. Results: The analgesic and anti-inflammatory activities of ethanol extracts of BP were significant (P < 0.001). The maximum analgesic effect was observed at 120 min at the dose of 100mg/kg (i.p.) and was comparable to that of standard analgin (150mg/kg) and the percentage of edema inhibition effect was 46.4% and 77% for 50mg/kg and 100mg/kg (i.p) respectively. Anti-inflammatory activity was compared with standard Diclofenac sodium (5mg/kg). Conclusion: Ethanol extract of Bauhinia purpurea has shown significant analgesic and anti-inflammatory activities at the dose of 100 mg/kg and was comparable with corresponding standard drugs. The activity was attributed to the presence of phytoconstituents in the tested extract

    Genetic mapping of drought tolerance traits phenotyped under varying drought stress environments in peanut (Arachis hypogaea L.)

    Get PDF
    Genomic regions governing water deficit stress tolerance were identified in peanut using a recombinant inbred line (RIL) population derived from an elite variety TMV 2 and its narrow leaf mutant TMV 2-NLM, which was evaluated over six-seasons at Dharwad (non-stress) and Tirupati (water-stress) in India. Stress condition could differentiate the RILs much better than the non-stress condition for the physiological traits. A linkage map with 700 markers was used to identify the quantitative trait loci (QTLs). Three sets of best linear unbiased predictions (BLUPs) were estimated for the drought tolerance traits for the rainy and post-rainy seasons at Dharwad and post-rainy seasons at Tirupati, and employed for single marker analysis, composite interval mapping and multiple QTL mapping. Of the 305 significant marker-trait associations for the 11 traits, only 21 were of major effect for pod yield per plant (PYPP), specific dry weight at 70 days after sowing (SDW_70) and specific leaf area at 70 DAS (SLA_70). Three major main effect QTLs were identified for PYPP with the highest phenotypic variance explained (PVE) of 10.5%. Nine QTLs with the highest PVE of 18.4% were identified for SDW_70, of which four QTLs were also governing SLA_70 with the highest PVE of 15.7%. A few of them were also involved in epistatic interactions, and formed multiple QTL mapping models. Five major QTLs for SDW_70 were stable over both the locations. Candidate genes with SNPs and AhMITE1 insertion were identified for the major QTL regions. A rare nonsynonymous SNP at Ah02_1558700 within the gene ArahyW1P0U6 governing PYPP was detected. Functional analysis of these candidate genes may be useful for future genetic modifications in addition to validating and using the linked markers for improving drought tolerance in peanut

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    No full text
    corecore