2 research outputs found

    Stochastic Lagrangian Particle Approach to Fractal Navier-Stokes Equations

    Full text link
    In this article we study the fractal Navier-Stokes equations by using stochastic Lagrangian particle path approach in Constantin and Iyer \cite{Co-Iy}. More precisely, a stochastic representation for the fractal Navier-Stokes equations is given in terms of stochastic differential equations driven by L\'evy processes. Basing on this representation, a self-contained proof for the existence of local unique solution for the fractal Navier-Stokes equation with initial data in \mW^{1,p} is provided, and in the case of two dimensions or large viscosity, the existence of global solution is also obtained. In order to obtain the global existence in any dimensions for large viscosity, the gradient estimates for L\'evy processes with time dependent and discontinuous drifts is proved.Comment: 19 page

    On degenerate stochastic equations of Itô type with jumps

    No full text
    The one-dimensional stochastic equation , where are Borel measurable functions, W is a Brownian motion, and Z is a symmetric stable process of index 0
    corecore