3 research outputs found

    Elasticity-driven interaction between vortices in type-II superconductors

    Full text link
    The contribution to the vortex lattice energy which is due to the vortex-induced strains is calculated covering all the magnetic field range which defines the vortex state. This contribution is compared with previously reported ones what shows that, in the most part of the vortex state, it has been notably underestimated until now. The reason of such underestimation is the assumption that only the vortex cores induce strains. In contrast to what is generally assumed, both core and non-core regions are important sources of strains in high-κ\kappa superconductors.Comment: 10 pages, 1 figure, revtex

    Mechanism for non stationary behaviour of thin-film superconducting bridges in the resistive current state

    No full text
    Short Josephson bridges prepared on one face of a rutile resonator show step structure in their I-V curves indicating coupling of generated Josephson currents with various cavity modes. Long (∼ 10 mm) bridges emit radiation in the 30-200 MHz range. The radiation occurs when the bridge is in the resistive current state. A model of a dynamic phase lamination, i. e., normal and superconducting phases alternating along the bridge, yields agreement with the experimental observations.Des microponts Josephson courts, préparés sur une face d'un résonateur en rutile (TiO2), présentent des courbes I-V structurées en marches indiquant ainsi que des courants Josephson sont générés pour divers modes de résonance de la cavité. Des ponts très longs (10 mm) émettent un rayonnement dans la bande 30 à 200 MHz quand ils se trouvent dans l'état résistif. Un modèle laminaire, où les phases normales et supraconductrices sont alternées, rend bien compte des observations expérimentales
    corecore