4 research outputs found
Physiopathology of catalytic antibodies: the case for FVIII-hydrolyzing IgG
Antibodies that are able to catalyze the antigen for which they are specific are produced spontaneously by the immune system. Catalytic immunoglobulins (Igs) both of the IgM and IgG isotypes have been detected in the serum of healthy donors, where they have been proposed to participate in the removal of metabolic waste and in the defense of the organism against invading pathogens. Conversely, antigen-specific hydrolytic IgG have been reported in a number of inflammatory, autoimmune and neoplastic disorders: their pathogenic effects have been demonstrated occasionally. The pathophysiological relevance of catalytic antibodies thus remains an elusive issue. Through the description of the pro-coagulation factor VIII as a model target antigen for catalytic antibodies, we propose that catalytic antibodies have either a beneficial or a deleterious role depending on the physiopathological context. Physiology thus relies on a delicate equilibrium between the levels of soluble target antigen and that of antigen-specific hydrolyzing immunoglobulins. Indeed, in patients with hemophilia A, in whom endogenous factor VIII is deficient or missing and exogenous factor VIII needs to be administered to treat hemorrhagic events, the development of factor VIII-hydrolyzing IgG that inactivate the therapeutically administered factor VIII, may reveal deleterious. In contrast, in a situation in which excess factor VIII may be detrimental and lead to excessive coagulation, disseminated thrombosis and organ ischemia, as seen in severe sepsis, our recent data suggest that the presence of factor VIII-hydrolyzing IgG may be beneficial to the patient
Prevention of Liver Fibrosis by Triple Helix-Forming Oligodeoxyribonucleotides Targeted to the Promoter Region of Type I Collagen Gene
Hepatic fibrosis leading to cirrhosis remains a global health problem. The most common etiologies are alcoholism and viral infections. Liver fibrosis is associated with major changes in both quantity and composition of extracellular matix and leads to disorganization of the liver architecture and irreversible damage to the liver function. As of now there is no effective therapy to control fibrosis. The end product of fibrosis is abnormal synthesis and accumulation of type I collagen in the extracellular matrix, which is produced by activated stellate or Ito cells in the damaged liver. Therefore, inhibition of transcription of type I collagen should in principle inhibit its production and accumulation in liver. Normally, DNA exists in a duplex form. However, under some circumstances, DNA can assume triple helical (triplex) structures. Intermolecular triplexes, formed by the addition of a sequence-specific third strand to the major groove of the duplex DNA, have the potential to serve as selective gene regulators. Earlier, we demonstrated efficient triplex formation between the exogenously added triplex-forming oligodeoxyribonucleotides (TFOs) and a specific sequence in the promoter region of the COL1A1 gene. In this study we used a rat model of liver fibrosis, induced by dimethylnitrosamine, to test whether these TFOs prevent liver fibrosis. Our results indicate that both the 25-mer and 18-mer TFOs, specific for the upstream nucleotide sequence from −141 to −165 (relative to the transcription start site) in the 5′ end of collagen gene promoter, effectively prevented accumulation of liver collagen and fibrosis. We also observed improvement in liver function tests. However, mutations in the TFO that eliminated formation of triplexes are ineffective in preventing fibrosis. We believe that these TFOs can be used as potential antifibrotic therapeutic molecules