178 research outputs found

    Quasideterminant solutions of a non-Abelian Toda lattice and kink solutions of a matrix sine-Gordon equation

    Full text link
    Two families of solutions of a generalized non-Abelian Toda lattice are considered. These solutions are expressed in terms of quasideterminants, constructed by means of Darboux and binary Darboux transformations. As an example of the application of these solutions, we consider the 2-periodic reduction to a matrix sine-Gordon equation. In particular, we investigate the interaction properties of polarized kink solutions.Comment: 14 pages; 4 picture

    Two ground-state modifications of quantum-dot beryllium

    Full text link
    Exact electronic properties of a system of four Coulomb-interacting two-dimensional electrons in a parabolic confinement are reported. We show that degenerate ground states of this system are characterized by qualitatively different internal electron-electron correlations, and that the formation of Wigner molecule in the strong-interaction regime is going on in essentially different ways in these ground states.Comment: 5 pages, incl 5 Figures and 2 Table

    Three-dimensional structure of Serratia marcescens nuclease at 1.7 Å resolution and mechanism of its action

    Get PDF
    AbstractThe three-dimensional crystal structure of Serratia marcescens (Sm) nuclease has been refined at 1.7 Å resolution to the R-factor of 17.3% and R-free of 22.2%. The final model consists of 3678 non-hydrogen atoms and 443 water molecules. The analysis of the secondary and the tertiary structures of the Sm nuclease suggests a topology which reveals essential inner symmetry in all the three layers forming the monomer. We propose the plausible mechanism of its action based on a concerted participation of the catalytically important amino acid residues of the enzyme active site

    Twist-3 Distribute Amplitude of the Pion in QCD Sum Rules

    Full text link
    We apply the background field method to calculate the moments of the pion two-particles twist-3 distribution amplitude (DA) ϕp(ξ)\phi_p(\xi) in QCD sum rules. In this paper,we do not use the equation of motion for the quarks inside the pion since they are not on shell and introduce a new parameter m0pm_0^p to be determined. We get the parameter m0p1.30GeVm_0^p\approx1.30GeV in this approach. If assuming the expansion of ϕp(ξ)\phi_p(\xi) in the series in Gegenbauer polynomials Cn1/2(ξ)C_n^{1/2}(\xi), one can obtain its approximate expression which can be determined by its first few moments.Comment: 12 pages, 3 figure

    Perturbative Effects in the Form Factor \gamma\gamma^*\to \pi and Extraction of the Pion Wave Function from CLEO Data

    Full text link
    We study the pion form factor F^{\pi \gamma\gamma^*}(Q^2) in the light-cone sum rule approach, accounting for radiative corrections and higher twist effects. Comparing the results to the CLEO experimental data on F^{\pi \gamma\gamma^*}(Q^2), we extract the the pion distribution amplitude of twist-2. The deviation of the distribution amplitude from the asymptotic one is small and is estimated to be a_2(\mu) = 0.12 \pm 0.03 at \mu=2.4 GeV, in the model with one non-asymptotic term. The ansatz with two non-asymptotic terms gives some region of a_2 and a_4, which is consistent with the asymptotic distribution amplitude, but does not agree with some old models.Comment: 21 pages, LaTeX, 7 eps figures; (v2): Phys. Rev. D versio

    Pion light-cone wave function and pion distribution amplitude in the Nambu-Jona-Lasinio model

    Get PDF
    We compute the pion light-cone wave function and the pion quark distribution amplitude in the Nambu-Jona-Lasinio model. We use the Pauli-Villars regularization method and as a result the distribution amplitude satisfies proper normalization and crossing properties. In the chiral limit we obtain the simple results, namely phi_pi(x)=1 for the pion distribution amplitude, and = -M / f_pi^2 for the second moment of the pion light-cone wave function, where M is the constituent quark mass and f_pi is the pion decay constant. After the QCD Gegenbauer evolution of the pion distribution amplitude good end-point behavior is recovered, and a satisfactory agreement with the analysis of the experimental data from CLEO is achieved. This allows us to determine the momentum scale corresponding to our model calculation, which is close to the value Q_0 = 313 MeV obtained earlier from the analogous analysis of the pion parton distribution function. The value of is, after the QCD evolution, around (400 MeV)^2. In addition, the model predicts a linear integral relation between the pion distribution amplitude and the parton distribution function of the pion, which holds at the leading-order QCD evolution.Comment: mistake in Eq.(38) correcte

    Ioffe-time distributions instead of parton momentum distributions in description of deep inelastic scattering

    Get PDF
    We argue that parton distributions in coordinate space provide a more natural object for nonperturbative methods compared to the usual momentum distributions in which the physics of different longitudinal distances is being mixed. To illustrate the advantages of the coordinate space formulation, we calculate the coordinate space distributions for valence quarks in the proton using the QCD sum rule approach. A remarkable agreement is found between the calculated and the experimentally measured u-quark distribution up to light-cone distances Δ=Δ0Δ3\Delta^- = \Delta^0 - \Delta^3 of order 1\sim 1 fm in the proton rest frame. The calculation for valence d quarks gives much worse results; the reasons for this discrepancy are discussed.Comment: 24 pages plus 13 pages with figures, requires epsf.sty, revised version to appear in Phys.Rev.

    Exclusive processes in position space and the pion distribution amplitude

    Get PDF
    We suggest to carry out lattice calculations of current correlators in position space, sandwiched between the vacuum and a hadron state (e.g. pion), in order to access hadronic light-cone distribution amplitudes (DAs). In this way the renormalization problem for composite lattice operators is avoided altogether, and the connection to the DA is done using perturbation theory in the continuum. As an example, the correlation function of two electromagnetic currents is calculated to the next-to-next-to-leading order accuracy in perturbation theory and including the twist-4 corrections. We argue that this strategy is fully competitive with direct lattice measurements of the moments of the DA, defined as matrix elements of local operators, and offers new insight in the space-time picture of hard exclusive reactions.Comment: 15 pages, 10 figure

    Pion-photon transition form factor. Living on the QCD frontier

    Full text link
    An analysis of all available data (CELLO, CLEO, \babar) in the range [1÷40][1\div 40] GeV2^2 for the pion-photon transition form factor in terms of light-cone sum rules with next-to-leading-order accuracy is discussed, including twist-four contributions and next-to-next-to-leading order and twist-six corrections---the latter two via uncertainties. The antithetic trend between the \babar data for the γγπ0\gamma^*\gamma\pi^0 and those for the γγη(η)\gamma^*\gamma\eta(\eta') transition is pointed out, emphasizing the underlying antagonistic mechanisms: endpoint enhancement for the first and endpoint-suppression for the second---each associated with pseudoscalar meson distribution amplitudes with distinct endpoint characteristics.Comment: 6 pages, 3 figures; needs style files svglov2.clo, svjour2.cls (supplied). Presented at LIGHTCONE 2011, 23 - 27 May, 2011, Dallas, USA. Accepted for publication in Few-Body Systems. In v2 name of second author in [28] corrected. V3 is final version, published online 23. Sep 201
    corecore