8 research outputs found

    Low temperature magnetoresistance of dirty thin films and quantum wires near a parallel-field-tuned superconducting quantum phase transition

    Full text link
    We study the low temperature magnetoresistance of dirty thin films and quantum wires close to a quantum phase transition from a superconducting to normal state, induced by applying a parallel magnetic field. We find that the different corrections (Aslamazov-Larkin, density of states and Maki-Thompson) to the normal state conductivity, coming from the superconducting pair fluctuations, are of the same order at zero temperature. There are three regimes at finite temperatures. In the "quantum" regime, which essentially shows a zero-temperature-like behavior we find a negative magnetoresistance. Since in the "classical" regime the correction is positive, we predict a non-monotonic magnetoresistance at higher temperatures.Comment: Proceedings for SCES conference (2004

    Enhancement of fusion rates due to quantum effects in the particles momentum distribution in nonideal media

    Full text link
    This study concerns a situation when measurements of the nonresonant cross-section of nuclear reactions appear highly dependent on the environment in which the particles interact. An appealing example discussed in the paper is the interaction of a deuteron beam with a target of deuterated metal Ta. In these experiments, the reaction cross section for d(d,p)t was shown to be orders of magnitude greater than what the conventional model predicts for the low-energy particles. In this paper we take into account the influence of quantum effects due to the Heisenberg uncertainty principle for particles in a non-ideal medium elastically interacting with the medium particles. In order to calculate the nuclear reaction rate in the non-ideal environment we apply both the Monte Carlo technique and approximate analytical calculation of the Feynman diagram using nonrelativistic kinetic Green's functions in the medium which correspond to the generalized energy and momentum distribution functions of interacting particles. We show a possibility to reduce the 12-fold integral corresponding to this diagram to a fivefold integral. This can significantly speed up the computation and control accuracy. Our calculations show that quantum effects significantly influence reaction rates such as p +7Be, 3He +4He, p +7Li, and 12C +12C. The new reaction rates may be much higher than the classical ones for the interior of the Sun and supernova stars. The possibility to observe the theoretical predictions under laboratory conditions is discussed

    Electron transport and energy relaxation in dilute magnetic alloys

    Full text link
    We consider the effect of the RKKY interaction between magnetic impurities on the electron relaxation rates in a normal metal. The interplay between the RKKY interaction and the Kondo effect may result in a non-monotonic temperature dependence of the electron momentum relaxation rate, which determines the Drude conductivity. The electron phase relaxation rate, which determines the magnitude of the weak localization correction to the resistivity, is also a non-monotonic function of temperature. For this function, we find the dependence of the position of its maximum on the concentration of magnetic impurities. We also relate the electron energy relaxation rate to the excitation spectrum of the system of magnetic impurities. The energy relaxation determines the distribution function for the out-of-equilibrium electrons. Measurement of the electron distribution function thus may provide information about the excitations in the spin glass phase.Comment: 15 pages, 5 figure

    Electronic properties and quantum transport in Graphene-based nanostructures

    No full text
    61.46.-w Structure of nanoscale materials, 73.63.-b Electronic transport in nanoscale materials and structures,

    Fluctuation Phenomena in Superconductors

    No full text
    corecore