3 research outputs found

    Graph products of spheres, associative graded algebras and Hilbert series

    Full text link
    Given a finite, simple, vertex-weighted graph, we construct a graded associative (non-commutative) algebra, whose generators correspond to vertices and whose ideal of relations has generators that are graded commutators corresponding to edges. We show that the Hilbert series of this algebra is the inverse of the clique polynomial of the graph. Using this result it easy to recognize if the ideal is inert, from which strong results on the algebra follow. Non-commutative Grobner bases play an important role in our proof. There is an interesting application to toric topology. This algebra arises naturally from a partial product of spheres, which is a special case of a generalized moment-angle complex. We apply our result to the loop-space homology of this space.Comment: 19 pages, v3: elaborated on connections to related work, added more citations, to appear in Mathematische Zeitschrif

    Division polynomials and canonical local heights on hyperelliptic Jacobians

    Get PDF
    We generalize the division polynomials of elliptic curves to hyperelliptic Jacobians over the complex numbers. We construct them by using the hyperelliptic sigma function. Using the division polynomial, we describe a condition that a point on the Jacobian is a torsion point. We prove several properties of the division polynomials such as determinantal expressions and recurrence formulas. We also study relations among the sigma function, the division polynomials, and the canonical local height functions
    corecore