17 research outputs found

    Cloning, partial sequencing and expression analysis of the neural form of P450 aromatase (cyp19a1b) in the South America catfish Rhamdia quelen

    Get PDF
    Brain aromatase is a key enzyme exclusively expressed in fish radial glial cells that convert androgens into estrogens, thus controlling neuroendocrine functions and neurogenesis. As an important step in characterizing the neuroendocrine systems of Rhamdia quelen (jundiá), a partial cDNA sequence (1045 bp) of brain aromatase (cyp19a1b) was cloned and sequenced. At the nucleotide level the cDNA sequence was found to be 88% identical to cyp19a1b of two species of catfish, Ictalurus punctatus and Silurus meridionalis. The predicted amino acid sequence was between 80 and 91% similar to other teleosts. Real-time RT-qPCR analysis revealed that cyp19a1b was detected in pituitary, hypothalamus, telencephalon, head and posterior kidneys, liver and gonads (testis and ovary) of both males and females. The effects of E2 on cyp19a1b expression are sexually dimorphic in R. quelen. The injection of 17β-estradiol (E2) decreased head kidney mRNA levels of cyp19a1b in males and increased cyp19a1b mRNA levels in the pituitary and head kidney of females. This study demonstrated that the R. quelen cyp19a1b gene is expressed in brain, pituitary and peripheral tissues in both males and females

    Tadpoles of the horned frog Ceratophrys ornata exhibit high sensitivity to chlorpyrifos for conventional ecotoxicological and novel bioacoustic variables

    No full text
    Previous studies reported that some species of the family Ceratophryidae are able to produce sounds during premetamorphic tadpole stages. We have now determined the effects of the cholinesterase-inhibiting insecticide chlorpyrifos (CPF) on sounds emitted by tadpoles of Ceratophrys ornata. Tadpoles were exposed individually in order to evaluate the progression of effects. Effects on sound production were complemented with common ecotoxicological endpoints (mortality, behavior, abnormalities and growth inhibition). C. ornata was found to be more sensitive than other native (= 67%, 50%) and non-native species (= 75%, 100%) considering lethal and sublethal endpoints, respectively. Effects on sounds appear along with alterations in swimming, followed by the presence of mild, then severe abnormalities and finally death. Therefore, sound production may be a good biomarker since it anticipates other endpoints that are also affected by CPF. Ceratophrys ornata is a promising new model species in ecotoxicology. Environmentally-relevant chlorpyrifos concentrations are disrupting key behaviors in C. ornata, including sound emission and locomotion.Fil: Salgado Costa, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química; ArgentinaFil: Ronco, Alicia Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química; ArgentinaFil: Trudeau, V.L.. University of Ottawa; CanadáFil: Marino, Damian Jose Gabriel. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Natale, Guillermo Sebastian. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentin

    Supplementary Material for: Sexing Frogs by Real-Time PCR: Using Aromatase <b><i>(cyp19) </i></b>as an Early Ovarian Differentiation Marker

    No full text
    Most anurans have no identified sex-markers; therefore, alternative methods for identification of early changes in sex ratios are required. In this study, <i>Lithobates sylvaticus</i> and <i>Silurana tropicalis</i> tadpoles were sampled at different developmental stages covering the entire process of sex differentiation. Three candidate genes known to be involved in sex differentiation in other vertebrate species were selected to develop a method to identify phenotypic sex in frogs: cytochrome p450 aromatase <i>(cyp19)</i>, forkhead box L2 <i>(foxl2)</i> and the cytochrome 17-alpha-hydroxylase/17,20 lyase <i>(cyp17)</i>. Cloning of these genes revealed nucleotide identity values ranging between 75–97% when compared to other amphibian species. Gene expression of <i>cyp17,</i><i>cyp19</i> and <i>foxl2</i> in <i>L. sylvaticus</i> adult gonads and gonad-mesonephros complex (GMC) of tadpoles was analyzed by real-time RT-PCR. Results showed clear sexually dimorphic patterns in the expression of the 3 genes. Our analysis reveals that GMC gene expression levels of <i>cyp19</i> alone can be used as a robust predictor of phenotypic sex in<i> L. sylvaticus </i>tadpoles. In addition, we validated this method measuring <i>cyp19</i> mRNA levels in <i>S. tropicalis </i>GMCs. We propose measuring <i>cyp19</i> as a tool to study the effects of chemical contaminants (including endocrine disrupting compounds) on amphibian gonadal development and sex ratios in the future

    Resonant ionization of shallow donors in electric field

    Get PDF
    In this paper, we report on our experimental observations of the resonant ionization of a phosphorus donor in silicon in a homogeneous electric field, which is expressed in the sudden rise of the conductivity of the sample at a low temperature when the electric field approaches the critical value of ∼3.2 MV m-1. The effect is discussed in terms of the field-induced interaction of the states using a simplified model based on the effective-mass theory. The results from our model are qualitatively similar to the previously published advanced model base, which is based on the first principles; this predicts the ionization thresholds at approximate fields of 2.45 and 3.25 MV m-1, the latter being in very good agreement with our experiment. The possibility of observing more than one resonance is also discussed

    Demasculinization and feminization of male gonads by atrazine:Consistent effects across vertebrate classes

    No full text
    Atrazine is the most commonly detected pesticide contaminant of ground water, surface water, and precipitation. Atrazine is also an endocrine disruptor that, among other effects, alters male reproductive tissues when animals are exposed during development. Here, we apply the nine so-called "Hill criteria" (Strength, Consistency, Specificity, Temporality, Biological Gradient, Plausibility, Coherence, Experiment, and Analogy) for establishing cause-effect relationships to examine the evidence for atrazine as an endocrine disruptor that demasculinizes and feminizes the gonads of male vertebrates. We present experimental evidence that the effects of atrazine on male development are consistent across all vertebrate classes examined and we present a state of the art summary of the mechanisms by which atrazine acts as an endocrine disruptor to produce these effects. Atrazine demasculinizes male gonads producing testicular lesions associated with reduced germ cell numbers in teleost fish, amphibians, reptiles, and mammals, and induces partial and/or complete feminization in fish, amphibians, and reptiles. These effects are strong (statistically significant), consistent across vertebrate classes, and specific. Reductions in androgen levels and the induction of estrogen synthesis - demonstrated in fish, amphibians, reptiles, and mammals - represent plausible and coherent mechanisms that explain these effects. Biological gradients are observed in several of the cited studies, although threshold doses and patterns vary among species. Given that the effects on the male gonads described in all of these experimental studies occurred only after atrazine exposure, temporality is also met here. Thus the case for atrazine as an endocrine disruptor that demasculinizes and feminizes male vertebrates meets all nine of the "Hill criteria".Fil: Hayes, Tyrone B.. University of California; Estados UnidosFil: Anderson, Lloyd L.. University of Iowa; Estados UnidosFil: Beasley, Val R.. University of Illinois at Urbana; Estados UnidosFil: de Solla, Shane R.. Wildlife and Landscape Science Directorate; CanadáFil: Iguchi, Taisen. National Institute for Basic Biology; JapónFil: Ingraham, Holly. University of California; Estados UnidosFil: Kestemont, Patrick. Université de Namur; BélgicaFil: Kniewald, Jasna. University of Zagreb; CroaciaFil: Kniewald, Zlatko. University of Zagreb; CroaciaFil: Langlois, Valerie. Royal Military College; CanadáFil: Luque, Enrique Hugo. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Fisiología. Laboratorio de Endocrinología y Tumores Hormonodependientes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: McCoy, Krista A.. University of South Florida; Estados UnidosFil: Muñoz de Toro, Monica Milagros. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Fisiología. Laboratorio de Endocrinología y Tumores Hormonodependientes; ArgentinaFil: Oka, Tomohiro. IDEA Consultants; JapónFil: Oliveira, Cleida A. Universidade Federal de Minas Gerais; BrasilFil: Orton, Frances. Colegio Universitario de Londres; Reino UnidoFil: Ruby, Sylvia. Concordia University; CanadáFil: Suzawa, Miyuki. University of California; Estados UnidosFil: Tavera Mendoza, Luz E.. Harvard Medical School; Estados UnidosFil: Trudeau, Vance L.. University of Ottawa; CanadáFil: Victor Costa, Anna Bolivar. Universidade Federal de Minas Gerais; BrasilFil: Willingham, Emily. No especifica
    corecore