9 research outputs found

    A Supersymmetric Stueckelberg U(1) Extension of the MSSM

    Full text link
    A Stueckelberg extension of the MSSM with only one abelian vector and one chiral superfield as an alternative to an abelian extension with Higgs scalars is presented. The bosonic sector contains a new gauge boson Z' which is a sharp resonance, and a new CP-even scalar, which combines with the MSSM Higgs bosons to produce three neutral CP-even massive states. The neutral fermionic sector has two additional fermions which mix with the four MSSM neutralinos to produce an extended 6x6 neutralino mass matrix. For the case when the LSP is composed mostly of the Stueckelberg fermions, the LSP of the MSSM will be unstable, which leads to exotic decays of sparticles with many leptons in final states. Prospects for supersymmetry searches and for dark matter are discussed.Comment: 10 page

    Universally Coupled Massive Gravity, II: Densitized Tetrad and Cotetrad Theories

    Full text link
    Einstein's equations in a tetrad formulation are derived from a linear theory in flat spacetime with an asymmetric potential using free field gauge invariance, local Lorentz invariance and universal coupling. The gravitational potential can be either covariant or contravariant and of almost any density weight. These results are adapted to produce universally coupled massive variants of Einstein's equations, yielding two one-parameter families of distinct theories with spin 2 and spin 0. The theories derived, upon fixing the local Lorentz gauge freedom, are seen to be a subset of those found by Ogievetsky and Polubarinov some time ago using a spin limitation principle. In view of the stability question for massive gravities, the proven non-necessity of positive energy for stability in applied mathematics in some contexts is recalled. Massive tetrad gravities permit the mass of the spin 0 to be heavier than that of the spin 2, as well as lighter than or equal to it, and so provide phenomenological flexibility that might be of astrophysical or cosmological use.Comment: 2 figures. Forthcoming in General Relativity and Gravitatio
    corecore