21 research outputs found
Transverse depinning in strongly driven vortex lattices with disorder
Using numerical simulations we investigate the transverse depinning of moving
vortex lattices interacting with random disorder. We observe a finite
transverse depinning barrier for vortex lattices that are driven with high
longitudinal drives, when the vortex lattice is defect free and moving in
correlated 1D channels. The transverse barrier is reduced as the longitudinal
drive is decreased and defects appear in the vortex lattice, and the barrier
disappears in the plastic flow regime. At the transverse depinning transition,
the vortex lattice moves in a staircase pattern with a clear transverse
narrow-band voltage noise signature.Comment: 4 pages, 4 figure
Transverse phase-locking in fully frustrated Josephson junction arrays: a new type of fractional giant steps
We study, analytically and numerically, phase locking of driven vortex
lattices in fully-frustrated Josephson junction arrays at zero temperature. We
consider the case when an ac current is applied {\it perpendicular} to a dc
current. We observe phase locking, steps in the current-voltage
characteristics, with a dependence on external ac-drive amplitude and frequency
qualitatively different from the Shapiro steps, observed when the ac and dc
currents are applied in parallel. Further, the critical current increases with
increasing transverse ac-drive amplitude, while it decreases for longitudinal
ac-drive. The critical current and the phase-locked current step width,
increase quadratically with (small) amplitudes of the ac-drive. For larger
amplitudes of the transverse ac-signal, we find windows where the critical
current is hysteretic, and windows where phase locking is suppressed due to
dynamical instabilities. We characterize the dynamical states around the
phase-locking interference condition in the curve with voltage noise,
Lyapunov exponents and Poincar\'e sections. We find that zero temperature
phase-locking behavior in large fully frustrated arrays is well described by an
effective four plaquette model.Comment: 12 pages, 11 figure
Critical Currents and Vortex States at Fractional Matching Fields in Superconductors with Periodic Pinning
We study vortex states and dynamics in 2D superconductors with periodic
pinning at fractional sub-matching fields using numerical simulations. For
square pinning arrays we show that ordered states form at 1/1, 1/2, and 1/4
filling fractions while only partially ordered states form at other filling
fractions, such as 1/3 and 1/5, in agreement with recent imaging experiments.
For triangular pinning arrays we observe matching effects at filling fractions
of 1/1, 6/7, 2/3, 1/3, 1/4, 1/6, and 1/7. For both square and triangular
pinning arrays we also find that, for certian sub-matching fillings, vortex
configurations depend on pinning strength. For weak pinning, ordering in which
a portion of the vortices are positioned between pinning sites can occur.
Depinning of the vortices at the matching fields, where the vortices are
ordered, is elastic while at the incommensurate fields the motion is plastic.
At the incommensurate fields, as the applied driving force is increased, there
can be a transition to elastic flow where the vortices move along the pinning
sites in 1D channels and a reordering transition to a triangular or distorted
triangular lattice. We also discuss the current-voltage curves and how they
relate to the vortex ordering at commensurate and incommensurate fields.Comment: 14 figure
RELEVANT PROBLEMS OF SPORTS NUTRITION
Nutrition is one of the primary factors of achievements in sports and sportsmen's health, on par with methodological and psychological aspects of training. A special place in sports nutrition is occupied by biologically active additives (BAA) made with plant and animal raw materials, amino acids, ferments, other irreplaceable nutrients and minor food constituents - energy, fat, protein and mineral exchange correctors, considering their efficiency and availability. Biologically active substances of the food components are also able to stimulate compensatory-adaptive reactions, prevent trauma and numerous diseases in professional sports, protect from common cold and other viral diseases before and during competitions. Great attention is paid to the scientific approbation of BAA formulae, with consideration of age, gender, sport type and synergic effect of separate components on metabolic processes in human organism. New types of BAA's for sports nutrition have been developed. The formulae have been created on the basis of data from literature and research on characteristics of active ingredients and their influence on the metabolic processes during training, competitions and recreational activities. Organoleptic, physical and chemical, hygienic and toxicological customer properties have been examined. Regulated quality indices (including nutritional value), which establish functional goals, have been determined. Considering the directions of BAA testing, the characteristic of several sport types has been given. The distinctive features of nutritional support have been investigated. The efficiency of specialized products has been determined by their inclusion into the diet and observation of specific properties, which characterize metabolic processes in sportsmen's organisms. The developed products have passed anti-doping control. They have been included into the Federal register and approved in the practice of sport competitions