5 research outputs found

    On a possible approach to the variable-mass problem

    Full text link
    The mass operator M is introduced as an independent dynamical variable which is taken as the translation generator P_4 of the inhomogenous De Sitter group. The classification of representations of the algebra P(1,4) of this group is performed and the corresponding P(1,4) invariant equations for variable-mass particles are written out. In this way we have succeeded, in particular, in uniting the ``external'' and ``internal'' (SU_2) symmetries in a non-trivial fashion.Comment: 4 page

    Enhanced Group Analysis and Exact Solutions of Variable Coefficient Semilinear Diffusion Equations with a Power Source

    Full text link
    A new approach to group classification problems and more general investigations on transformational properties of classes of differential equations is proposed. It is based on mappings between classes of differential equations, generated by families of point transformations. A class of variable coefficient (1+1)-dimensional semilinear reaction-diffusion equations of the general form f(x)ut=(g(x)ux)x+h(x)umf(x)u_t=(g(x)u_x)_x+h(x)u^m (m≠0,1m\ne0,1) is studied from the symmetry point of view in the framework of the approach proposed. The singular subclass of the equations with m=2m=2 is singled out. The group classifications of the entire class, the singular subclass and their images are performed with respect to both the corresponding (generalized extended) equivalence groups and all point transformations. The set of admissible transformations of the imaged class is exhaustively described in the general case m≠2m\ne2. The procedure of classification of nonclassical symmetries, which involves mappings between classes of differential equations, is discussed. Wide families of new exact solutions are also constructed for equations from the classes under consideration by the classical method of Lie reductions and by generation of new solutions from known ones for other equations with point transformations of different kinds (such as additional equivalence transformations and mappings between classes of equations).Comment: 40 pages, this is version published in Acta Applicanda Mathematica

    Integrability of Difference Equations Through Algebraic Entropy and Generalized Symmetries

    No full text
    Given an equation arising from some application or theoretical consideration one of the first questions one might ask is: What is its behavior? It is integrable? In these lectures we will introduce two different ways for establishing (and in some sense also defining) integrability for difference equations: Algebraic Entropy and Generalized Symmetries. Algebraic Entropy deals with the degrees of growth of the solution of any kind of discrete equation (ordinary, partial or even differential-difference) and usually provides a quick test to establish if an equation is or not integrable. The approach based on Generalized Symmetries also provides tools for investigating integrable equations and to find particular solutions by symmetry reductions. The main focus of the lectures will be on the computational tools that allow us to calculate Generalized Symmetries and extract the value of the Algebraic Entropy from a finite number of iterations of the map
    corecore