4 research outputs found

    Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds

    No full text
    Environmental pollution with petroleum products such as benzene, toluene, ethylbenzene, and xylenes (BTEX) has garnered increasing awareness because of its serious consequences for human health and the environment. We have constructed toluene bacterial biosensors comprised of two reporter genes, gfp and luxCDABE, characterized by green fluorescence and luminescence, respectively, and compared their abilities to detect bioavailable toluene and related compounds. The bacterial luminescence biosensor allowed faster and more-sensitive detection of toluene; the fluorescence biosensor strain was much more stable and thus more applicable for long-term exposure. Both luminescence and fluorescence biosensors were field-tested to measure the relative bioavailability of BTEX in contaminated groundwater and soil samples. The estimated BTEX concentrations determined by the luminescence and fluorescence bacterial biosensors were closely comparable to each other. Our results demonstrate that both bacterial luminescence and fluorescence biosensors are useful in determining the presence and the bioavailable fractions of BTEX in the environment. (c) 2007 Elsevier Ltd. All rights reserved

    Theoretical investigation of the photoinitiated folding of HP-36

    No full text
    A computational model was developed to examine the phototriggered folding of a caged protein, a protein modified with an organic photolabile cross-linker. Molecular dynamics simulations of the modified 36-residue fragment of subdomain B of chicken villin head piece with a photolabile linker were performed, starting from both the caged and the uncaged structures. Construction of a free-energy landscape, based on principal components as well as on radius of gyration versus root-mean-square deviation, and circular dichroism calculations were employed to characterize folding behavior and structures. The folded structures observed in the molecular dynamics trajectories were found to be similar to that of the wild-type protein, in agreement with the published experimental results. The free-energy landscapes of the modified and wild-type proteins have similar topology, suggesting common thermodynamic/kinetic behavior. The existence of small differences in the free-energy surface of the modified protein from that of the native protein, however, indicates subtle differences in the folding behavior
    corecore