6 research outputs found

    Two-dimensional negative donors in magnetic fields

    Full text link
    A finite-difference solution of the Schroedinger equation for negative donor centers D^- in two dimensions is presented. Our approach is of exact nature and allows us to resolve a discrepancy in the literature on the ground state of a negative donor. Detailed calculations of the energies for a number of states show that for field strengths less than \gamma=0.117 a.u. the donor possesses one bound state, for 0.117<\gamma<1.68 a.u. there exist two bound states and for field strengths \gamma>1.68 a.u. the system possesses three bound states. Further relevant characteristics of negative donors in magnetic fields are provided.Comment: 7 pages, 1 figur

    Neutrino-electron processes in a dense magnetized plasma

    Get PDF
    The neutrino-electron scattering in a dense degenerate magnetized plasma under the conditions μ2>2eB≫μE\mu^2 > 2eB \gg \mu E is investigated. The volume density of the neutrino energy and momentum losses due to this process are calculated. The results we have obtained demonstrate that plasma in the presence of an external magnetic field is more transparent for neutrino than non-magnetized plasma. It is shown that neutrino scattering under conditions considered does not lead to the neutrino force acting on plasma.Comment: 11 pages, LATEX, to be published in Central European Science Journa

    Helium in superstrong magnetic fields

    Get PDF
    We investigate the helium atom embedded in a superstrong magnetic field gamma=100-10000 au. All effects due to the finite nuclear mass for vanishing pseudomomentum are taken into account. The influence and the magnitude of the different finite mass effects are analyzed and discussed. Within our full configuration interaction approach calculations are performed for the magnetic quantum numbers M=0,-1,-2,-3, singlet and triplet states, as well as positive and negative z parities. Up to six excited states for each symmetry are studied. With increasing field strength the number of bound states decreases rapidly and we remain with a comparatively small number of bound states for gamma=10^4 au within the symmetries investigated here.Comment: 16 pages, including 14 eps figures, submitted to Phys. Rev.

    Neutron Stars—Thermal Emitters

    No full text
    corecore