16 research outputs found
Energy diffusion in strongly driven quantum chaotic systems
The energy evolution of a quantum chaotic system under the perturbation that
harmonically depends on time is studied for the case of large perturbation, in
which the rate of transition calculated from the Fermi golden rule exceeds the
frequency of perturbation. It is shown that the energy evolution retains its
diffusive character, with the diffusion coefficient that is asymptotically
proportional to the magnitude of perturbation and to the square root of the
density of states. The results are supported by numerical calculation. They
imply the absence of the quantum-classical correspondence for the energy
diffusion and the energy absorption in the classical limit .Comment: 12 pages, 3 figures, RevTe
Astrophysical structures from primordial quantum black holes
The characteristic sizes of astrophysical structures, up to the whole
observed Universe, can be recovered, in principle, assuming that gravity is the
overall interaction assembling systems starting from microscopic scales, whose
order of magnitude is ruled by the Planck length and the related Compton
wavelength. This result agrees with the absence of screening mechanisms for the
gravitational interaction and could be connected to the presence of Yukawa
corrections in the Newtonian potential which introduce typical interaction
lengths. This result directly comes out from quantization of primordial black
holes and then characteristic interaction lengths directly emerge from quantum
field theory.Comment: 11 page