6 research outputs found
Topological and geometrical restrictions, free-boundary problems and self-gravitating fluids
Let (P1) be certain elliptic free-boundary problem on a Riemannian manifold
(M,g). In this paper we study the restrictions on the topology and geometry of
the fibres (the level sets) of the solutions f to (P1). We give a technique
based on certain remarkable property of the fibres (the analytic representation
property) for going from the initial PDE to a global analytical
characterization of the fibres (the equilibrium partition condition). We study
this analytical characterization and obtain several topological and geometrical
properties that the fibres of the solutions must possess, depending on the
topology of M and the metric tensor g. We apply these results to the classical
problem in physics of classifying the equilibrium shapes of both Newtonian and
relativistic static self-gravitating fluids. We also suggest a relationship
with the isometries of a Riemannian manifold.Comment: 36 pages. In this new version the analytic representation hypothesis
is proved. Please address all correspondence to D. Peralta-Sala