12 research outputs found

    Quasilinearization Method and Summation of the WKB Series

    Full text link
    Solutions obtained by the quasilinearization method (QLM) are compared with the WKB solutions. Expansion of the pp-th QLM iterate in powers of \hbar reproduces the structure of the WKB series generating an infinite number of the WKB terms with the first 2p2^p terms reproduced exactly. The QLM quantization condition leads to exact energies for the P\"{o}schl-Teller, Hulthen, Hylleraas, Morse, Eckart potentials etc. For other, more complicated potentials the first QLM iterate, given by the closed analytic expression, is extremely accurate. The iterates converge very fast. The sixth iterate of the energy for the anharmonic oscillator and for the two-body Coulomb Dirac equation has an accuracy of 20 significant figures

    Effects of Negative Energy Components in the Constituent Quark Model

    Full text link
    Relativistic covariance requires that in the constituent quark model for mesons the positive energy states as well as the negative energy states are included. Using relativistic quasi-potential equations the contribution of the negative energy states is studied for the light and charmonium mesons. It is found that these states change the meson mass spectrum significantly but leave its global structure untouched.Comment: 14 pages revtex 3.0, 4 figures uudecoded attached in postscript format, THU-93/1

    Relativistic effects and quasipotential equations

    Get PDF
    We compare the scattering amplitude resulting from the several quasipotential equations for scalar particles. We consider the Blankenbecler-Sugar, Spectator, Thompson, Erkelenz-Holinde and Equal-Time equations, which were solved numerically without decomposition into partial waves. We analyze both negative-energy state components of the propagators and retardation effects. We found that the scattering solutions of the Spectator and the Equal-Time equations are very close to the nonrelativistic solution even at high energies. The overall relativistic effect increases with the energy. The width of the band for the relative uncertainty in the real part of the scattering TT matrix, due to different dynamical equations, is largest for backward-scattering angles where it can be as large as 40%.Comment: Accepted for publication in Phys. Rev.

    Unitarity and the Bethe-Salpeter Equation

    Full text link
    We investigate the relation between different three-dimensional reductions of the Bethe-Salpeter equation and the analytic structure of the resultant amplitudes in the energy plane. This correlation is studied for both the ϕ2σ\phi^2\sigma interaction Lagrangian and the πN\pi N system with ss-, uu-, and tt-channel pole diagrams as driving terms. We observe that the equal-time equation, which includes some of the three-body unitarity cuts, gives the best agreement with the Bethe-Salpeter result. This is followed by other 3-D approximations that have less of the analytic structure.Comment: 17 pages, 8 figures; RevTeX. Version accepted for publication in Phys. Rev.

    Energy and decay width of the pi-K atom

    Get PDF
    The energy and decay width of the pi-K atom are evaluated in the framework of the quasipotential-constraint theory approach. The main electromagnetic and isospin symmetry breaking corrections to the lowest-order formulas for the energy shift from the Coulomb binding energy and for the decay width are calculated. They are estimated to be of the order of a few per cent. We display formulas to extract the strong interaction S-wave pi-K scattering lengths from future experimental data concerning the pi-K atom.Comment: 37 pages, 5 figures, uses Axodra
    corecore