25 research outputs found

    Genesis of Dark Energy: Dark Energy as Consequence of Release and Two-stage Tracking Cosmological Nuclear Energy

    Full text link
    Recent observations on Type-Ia supernovae and low density (Ωm=0.3\Omega_{m} = 0.3) measurement of matter including dark matter suggest that the present-day universe consists mainly of repulsive-gravity type `exotic matter' with negative-pressure often said `dark energy' (Ωx=0.7\Omega_{x} = 0.7). But the nature of dark energy is mysterious and its puzzling questions, such as why, how, where and when about the dark energy, are intriguing. In the present paper the authors attempt to answer these questions while making an effort to reveal the genesis of dark energy and suggest that `the cosmological nuclear binding energy liberated during primordial nucleo-synthesis remains trapped for a long time and then is released free which manifests itself as dark energy in the universe'. It is also explained why for dark energy the parameter w=2/3w = - {2/3}. Noting that w=1 w = 1 for stiff matter and w=1/3w = {1/3} for radiation; w=2/3w = - {2/3} is for dark energy because "1""-1" is due to `deficiency of stiff-nuclear-matter' and that this binding energy is ultimately released as `radiation' contributing "+1/3""+ {1/3}", making w=1+1/3=2/3w = -1 + {1/3} = - {2/3}. When dark energy is released free at Z=80Z = 80, w=2/3w = -{2/3}. But as on present day at Z=0Z = 0 when radiation strength has diminished to δ0\delta \to 0, w=1+δ1/3=1w = -1 + \delta{1/3} = - 1. This, thus almost solves the dark-energy mystery of negative pressure and repulsive-gravity. The proposed theory makes several estimates /predictions which agree reasonably well with the astrophysical constraints and observations. Though there are many candidate-theories, the proposed model of this paper presents an entirely new approach (cosmological nuclear energy) as a possible candidate for dark energy.Comment: 17 pages, 4 figures, minor correction

    The averaged tensors of the relative energy-momentum and angular momentum in general relativity and some their applications

    Full text link
    There exist at least a few different kind of averaging of the differences of the energy-momentum and angular momentum in normal coordinates {\bf NC(P)} which give tensorial quantities. The obtained averaged quantities are equivalent mathematically because they differ only by constant scalar dimensional factors. One of these averaging was used in our papers [1-8] giving the {\it canonical superenergy and angular supermomentum tensors}. In this paper we present another averaging of the differences of the energy-momentum and angular momentum which gives tensorial quantities with proper dimensions of the energy-momentum and angular momentum densities. But these averaged relative energy-momentum and angular momentum tensors, closely related to the canonical superenergy and angular supermomentum tensors, {\it depend on some fundamental length L>0L>0}. The averaged relative energy-momentum and angular momentum tensors of the gravitational field obtained in the paper can be applied, like the canonical superenergy and angular supermomentum tensors, to {\it coordinate independent} analysis (local and in special cases also global) of this field. We have applied the averaged relative energy-momentum tensors to analyze vacuum gravitational energy and momentum and to analyze energy and momentum of the Friedman (and also more general) universes. The obtained results are very interesting, e.g., the averaged relative energy density is {\it positive definite} for the all Friedman universes.Comment: 30 pages, minor changes referring to Kasner universe

    Bianchi Type V Viscous Fluid Cosmological Models in Presence of Decaying Vacuum Energy

    Full text link
    Bianchi type V viscous fluid cosmological model for barotropic fluid distribution with varying cosmological term Λ\Lambda is investigated. We have examined a cosmological scenario proposing a variation law for Hubble parameter HH in the background of homogeneous, anisotropic Bianchi type V space-time. The model isotropizes asymptotically and the presence of shear viscosity accelerates the isotropization. The model describes a unified expansion history of the universe indicating initial decelerating expansion and late time accelerating phase. Cosmological consequences of the model are also discussed.Comment: 10 pages, 3 figure

    How does Inflation Depend Upon the Nature of Fluids Filling Up the Universe in Brane World Scenario

    Full text link
    By constructing different parameters which are able to give us the information about our universe during inflation,(specially at the start and the end of the inflationary universe) a brief idea of brane world inflation is given in this work. What will be the size of the universe at the end of inflation,i.e.,how many times will it grow than today's size is been speculated and analysed thereafter. Different kinds of fluids are taken to be the matter inside the brane. It is observed that in the case of highly positive pressure grower gas like polytropic,the size of the universe at the end of inflation is comparitively smaller. Whereas for negative pressure creators (like chaplygin gas) this size is much bigger. Except thse two cases, inflation has been studied for barotropic fluid and linear redshift parametrization ω(z)=ω0+ω1z\omega(z) = \omega_{0} + \omega_{1} z too. For them the size of the universe after inflation is much more high. We also have seen that this size does not depend upon the potential energy at the end of the inflation. On the contrary, there is a high impact of the initial potential energy upon the size of inflation.Comment: 20 page

    Stability analysis of agegraphic dark energy in Brans-Dicke cosmology

    Full text link
    Stability analysis of agegraphic dark energy in Brans-Dicke theory is presented in this paper. We constrain the model parameters with the observational data and thus the results become broadly consistent with those expected from experiment. Stability analysis of the model without best fitting shows that universe may begin from an unstable state passing a saddle point and finally become stable in future. However, with the best fitted model, There is no saddle intermediate state. The agegraphic dark energy in the model by itself exhibits a phantom behavior. However, contribution of cold dark matter on the effective energy density modifies the state of teh universe from phantom phase to quintessence one. The statefinder diagnosis also indicates that the universe leaves an unstable state in the past, passes the LCDM state and finally approaches the sable state in future.Comment: 15 pages, 12 figure

    Plane-symmetric inhomogeneous magnetized viscous fluid universe with a variable Λ\Lambda

    Full text link
    The behavior of magnetic field in plane symmetric inhomogeneous cosmological models for bulk viscous distribution is investigated. The coefficient of bulk viscosity is assumed to be a power function of mass density (ξ=ξ0ρn)(\xi =\xi_{0}\rho^{n}). The values of cosmological constant for these models are found to be small and positive which are supported by the results from recent supernovae Ia observations. Some physical and geometric aspects of the models are also discussed.Comment: 18 pages, LaTex, no figur

    Variable G and Λ\Lambda: scalar-tensor versus RG-improved cosmology

    Full text link
    We study the consequences due to time varying GG and Λ\Lambda in scalar-tensor theories of gravity for cosmology, inspired by the modifications introduced by the Renormalization Group (RG) equations in the Quantum Einstein Gravity. We assume a power-law scale factor in presence contemporarily of both the scalar field and the matter components of the cosmic fluid, and analyze a special case and its generalization, also showing the possibility of a phantom cosmology. In both such situations we find a negative kinetic term for the scalar field QQ and, possibly, an equation-of-state parameter wQ<1w_Q<-1. A violation of dominant energy condition (DEC) for QQ is also possible in both of them; but, while in the first special case the QQ-energy density then remains positive, in the second one we find it negative.Comment: 25 pages, to be published in Gen. Rel. Grav. 200

    Transient Crossing of Phantom divide line wΛ=1w_{\Lambda}=-1 under Gauss-Bonnet interaction

    Full text link
    Smooth double crossing of the phantom barrier wΛ=1w_{\Lambda} = -1 has been found possible in cosmological model with Gauss-Bonnet-scalar interaction, in the presence of background cold dark matter. Such crossing has been observed to be a sufficiently late time phenomena and independent of the sign of Gauss-Bonnet-scalar interaction. The luminosity distance versus redshift curve shows a perfect fit with the ΛCDM\Lambda CDM model up to z=3.5z=3.5.Comment: 9 pages, 9 figure
    corecore