3 research outputs found

    Conditions Of Subaerial Weathering Of Basalts In The Neoarchean And Paleoproterozoic

    No full text
    Precambrian weathering profiles (or regoliths) were formed on the Earth's surface in contact with meteoritic water. This signifies that their mineral and bulk composition should reflect the environmental conditions at the time of weathering. The aim of this study is to reconstruct the main mineralogical and chemical trends involved in the formation of Precambrian weathering regoliths by means of geochemical modeling verified through laboratory experimentation. We have demonstrated that, in a wide range of modeling conditions, weathering profiles of basalts consist mostly of clay minerals (smectites and illite). Carbonate minerals may also be deposited within the profile at the initial stage of weathering, which are later dissolved during a further process. The time, necessary for complete dissolution of primary minerals and crystallization of authigenic minerals is between 100 and 140Kyr. Modeling results indicate that Neoarchean and Paleoproterozoic (2.8-2.0Ga) weathering profiles were formed under an atmosphere with pCO2 not much higher than 25 PAL and climatic conditions close to those found in modern times. Weathering under CO2-rich (pCO2=1 and 10bar) and CH4-rich atmospheres as well as high temperature (50°C and 75°C) conditions do not produce compounds corresponding to the analyzed samples. © 2013 Elsevier B.V.241116Alekseev, V.A., Equations for the dissolution reaction rates of montmorillonite, illite, and chlorite (2007) Geochemistry International, 45 (8), pp. 770-780Alfimova, N.A., (2007), PhD thesis. S-PetersburgAnderson, G.M., (2005) Thermodynamics of Natural Systems, p. 648. , Cambridge University Press, São PauloArvidson, R.S., Mackenzie, F.T., Tentative kinetic model for dolomite precipitation rate and its application to dolomite distribution (1997) Aquatic Geochemistry, 2, pp. 273-298Bain, D.C., Ritchie, P.F.S., Clark, D.R., Duthie, D.M.L., Geochemistry and mineralogy of weathered basalt from Morvern, Scotland (1980) Mineralogical Magazine, 43, pp. 865-872Beinlich, A., Austrheim, H., Glodny, J., Erambert, M., Andersen, T.B., CO2 sequestration and extreme Mg depletion in serpentinized peridotite clasts from the Devonian Solund basin, SW-Norway (2010) Geochimica et Cosmochimica Acta, 74, pp. 6935-6964Berner, E.K., Berner, R.A., (1996) Global Environment: Water, Air, and Geochemical Cycles, , Prentice Hall, Upper Saddle River, NJBish, D.L., Brindley, G.W., Deweylites, mixtures of poorly crystalline hydrous serpentine and talc-like minerals (1978) Mineralogical Magazine, 42, pp. 75-79Blake, R.E., Chang, S.J., Lepland, A., Phosphate oxygen isotope evidence for a temperate and biologically active Archean ocean (2010) Nature, 464, pp. 1029-1033Brimhall, G.H., Chadwick, O.A., Lewis, C.J., Compston, W., Williams, I.S., Danti, K.J., Dietrich, W.E., Bratt, J., Deformational mass transport and invasive processes in soil evolution (1991) Science, 255, pp. 695-702Burch, T.E., Nagy, K.L., Lasaga, A.C., Free energy dependence of albite dissolution kinetics at 80°C and pH 8.8 (1993) Chemical Geology, 105, pp. 137-162Capo, R.C., Whipkey, C.E., Blachère, J.R., Chadwick, O.A., Pedogenic origin of dolomite in a basaltic weathering profile, Kohala peninsula, Hawaii (2000) Geology, 28 (3), pp. 271-274Claire, M.W., Catling, D.C., Zahnle, K.J., Biogeochemical modelling of the rise in atmospheric oxygen (2006) Geobiology, 4, pp. 239-269Colman, S.M., Chemical weathering of basalts and andesites: evidence from weathering rinds (1982) United States Geological Survey Professional Paper, 1246, p. 51Deer, A., Howie, R., Wise, W.S., Zussman, J., (2004) Rock Forming Minerals. Framework Silicates: Silica Minerals, Feldspathoids and the Zeolites, B (4). , The Geological Society, LondonDriese, S.G., Pedogenic translocation of Fe in modern and ancient vertisols and implications for interpretations of the Hekpoort Paleosol (2.25Ga) (2004) Journal of Geology, 112, pp. 543-560Driese, S.G., Jirsa, M.A., Ren, M., Brantley, S.L., Sheldon, N.D., Parker, D., Schmitz, M., Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69Ga early terrestrial ecosystems and paleoatmospheric chemistry (2011) Precambrian Research, 189, pp. 1-17Eggleton, R.A., Foudoulis, C., Varkevisser, D., Weathering of basalt: changes in rock chemistry and mineralogy (1987) Clays and Clay Minerals, 35 (3), pp. 161-169Fabre, S., Berger, G., Nédélec, A., Modeling of continental weathering under high-CO2 atmospheres during Precambrian times (2011) Geochemistry, Geophysics, Geosystems, 12 (10), pp. Q10001Farquhar, J., Wing, B.A., Multiple sulfur isotopes and the evolution of the atmosphere (2003) Earth and Planetary Science Letters, 213, pp. 1-13Fedo, C.M., Nesbitt, H.W., Young, G.M., Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance (1995) Geology, 23, pp. 921-924Gallagher, T.M., Sheldon, N.D., A new paleothermometer for forest paleosols and its implications for Cenozoic climate (2013) Geology, 41, pp. 647-650González-Álvarez, I., Kerrich, R., Weathering intensity in the Mesoproterozoic and modern large-river systems: a comparative study in the Belt-Purcell Supergroup, Canada and USA (2012) Precambrian Research, pp. 174-196Gorkovetz, Metalogenia of Karelia (1999) Petrozavodsk, p. 71Grundl, T., Delwiche, J., Kinetics of ferric oxyhydroxide precipitation (1993) Journal of Contaminant Hydrology, 14, pp. 71-97Gudbrandsson, S., Wolff-Boenisch, D., Gislason, S.R., Oelkers, E.H., An experimental study of crystalline basalt dissolution from 2≤pH≤11 and temperatures from 5 to 75°C (2011) Geochimica et Cosmochimica Acta, 75, pp. 5496-5509Haqq-Misra, J.D., Domagal-Goldman, S.D., Kasting, P.J., Kasting, J.F., A revised, hazy methane greenhouse for the Archean Earth (2008) Astrobiology, 8 (6), pp. 1127-1137Hausrath, E.M., Neaman, A., Brantley, S.L., Elemental release rates from dissolving basalt and granite with and without organic ligands (2009) American Journal of Science, 309, pp. 633-660Heiskanen, Bondar, (1998), pp. 15-16. , Handbook of Geologic ExcursionsHochella, M.F.J., Banfield, J.F., Chemical weathering of silicates in nature: a microscopic perspective with theoretical considerations (1995) Chemical Weathering Rates of Silicate Minerals, 31, pp. 353-406. , Mineralogical Society of America, Washington, DCHodson, M.E., Does reactive surface area depend on grain size? Results from pH 3, 25°C far-from-equilibrium flow-through dissolution experiments on anorthite and biotite (2006) Geochimica et Cosmochimica Acta, 70, pp. 1655-1667Holland, H.D., (1984) The Chemical Evolution of the Atmosphere and Oceans, , Princeton University Press, Princeton, NJHolland, H.D., The oxydation of the atmosphere and oceans (2006) Philosophical Transactions of the Royal Society Section BHolland, H.D., Why the atmosphere became oxygenated: a proposal (2009) Geochimica et Cosmochimica Acta, 73, pp. 5241-5255Hren, M.T., Tice, M.M., Chamberlain, C.P., Oxygen and hydrogen isotope evidence for a temperature climate 3.42 billion years ago (2009) Nature, 462, pp. 205-208Johnson, J.W., Oelkers, E.H., Helgeson, H.C., SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000bars and 0°C to 1000°C (1992) Computers & Geosciences, 18, pp. 899-947Kasting, J.F., Ackerman, T.P., Climatic consequences of very high carbone dioxide levels in the Earth's early atmosphere (1986) Science, 234, pp. 1383-1385Kasting, J.F., Ono, S., Palaeoclimates: the first two billion years (2006) Philosophical Transactions of the Royal Society, 361, pp. 917-929Klimova, E.V., Matrenichev, V.A., (2010) Mineralogical and chemical composition of clayey deposits in caves. Abstracts of MECC2010. Budapest Hungary, p. 99Konhauser, K.O., Lalonde, S.V., Planavsky, N.J., Pecoits, E., Lyons, T.W., Mojzsis, S.J., Rouxel, O.J., Bekker, A., Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event (2011) Nature, 478, pp. 369-374Kump, L., Brantley, S.L., Arthur, M.A., Chemical weathering, atmospheric CO2 and climate (2000) Annual Review of Earth And Planetary Sciences, 28, pp. 611-667Lowe, D.R., Tice, M.M., Geologic evidence for Archean atmospheric and climatic evolution: fluctuating levels of CO2, CH4 and O2 with an overriding tectonic control (2004) Geology, 32 (6), pp. 493-496Ma, J.L., Wei, G.J., Xu, Y.G., Long, W.G., Sun, W.D., Mobilization and re-distribution of major and trace elements during extreme weathering of basalts in Hainan Island, South China (2007) Geochimica et Cosmochimica Acta, 71, pp. 3223-3237Martin, H., Moyen, J.F., Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth (2002) Geology, 30 (4), pp. 319-322Matter, J.M., Takahashi, T., Goldberg, D., Experimental evaluation of in situ CO2-water-rock reactions during CO2 injection in basaltic rocks: implications for geological CO2 sequestration (2007) Geochemistry, Geophysics, Geosystems, 8, pp. 1-19Maynard, J.B., Chemistry of modern soils as a guide to interpreting Precambrian Paleosols (1992) Journal of Geology, 100, pp. 279-289Millero, F.J., Sotolongo, S., Izaguirre, M., The oxidation kinetics of Fe(II) in seawater (1987) Geochimica et Cosmochimica Acta, 51, pp. 793-801Mironenko, M.V., Melikhova, T.Y.U., Zolotov, M.Yu., Akinfiev, N.N., (2008), GEOCHEQ_M: Program Complex for Thermodynamic and Kinetic Modeling of Geochemical Processes in Rock-Water-Gas Systems. Version 2008. Vestn. Otdelenia nauk o Zemle RAN 26Mironenko, M.V., Zolotov, M., Equilibrium-kinetic model of water-rock interaction (2012) Geochemistry International, 50 (1), pp. 1-7Mitchell, R.L., Sheldon, N.D., Weathering and paleosol formation in the 1.1Ga Keweenawan Rift (2009) Precambrian Research, 168, pp. 271-283Mitchell, R.L., Sheldon, N.D., The ~1100Ma Sturgeon Falls paleosol revisited: implications for Mesoproterozoic weathering environments and atmospheric CO2 levels (2010) Precambrian Research, 183, pp. 738-748Morgan, B., Lahav, O., The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution - basic principles and a simple heuristic description (2007) Chemosphere, 68, pp. 2080-2084Mukasa, S.B., Wilson, A.H., Young, K.R., Geochronological constraints on the magmatic and tectonic development of the Pongola Supergroup (Central Region), South Africa (2013) Precambrian Research, 224, pp. 268-286Murakami, T., Sreenivas, B., Sharma, S.D., Sugimori, H., Quantification of atmospheric oxygen levels during the Paleoproterozoic using paleosol compositions and iron oxidation kinetics (2011) Geochimica et Cosmochimica Acta, 75, pp. 3982-4004Navarre-Sitchler, A., Brantley, S., Basalt weathering across scales (2007) Earth and Planetary Science Letters, 261, pp. 321-334Navarre-Sitchler, A., Steefel, C.I., Yang, L., Tomutsa, L., Brantley, S.L., Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast (2009) Journal of Geophysical Research, 114, pp. F02016Nesbitt, H.W., Young, G.M., Formation and diagenesis of weathering profiles (1989) Journal of Geology, 97, pp. 129-147Nesbitt, H.W., Wilson, R.E., Recent chemical weathering of basalts (1992) American Journal of Science, 292, pp. 740-777Palandri, J.L., Kharaka, Y.K., (2004) A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling. Open-File Rep. 2004-1068, p. 70. , U.S. Geol. Surv., Menlo Park, CAPandit, M.K., Wall, H., Chauhan, N.K., Paleosol at the Archean-Proterozoic contact in NW India revisited: evidence for oxidizing conditions during paleo-weathering? (2008) J. Earth Syst. Sci., 117 (3), pp. 201-209Parker, A., An index of weathering for silicate rocks (1970) Geological Magazine, 107, pp. 501-504Pham, A.N., Rose, A.L., Feitz, A.J., Waite, T.D., Kinetics of Fe(III) precipitation in aqueous solutions at pH 6.0-9.5 and 25°C (2006) Geochimica et Cosmochimica Acta, 70, pp. 640-650PierreHumbert, R.T., The hydrologic cycle in deep-time climate problems (2002) Nature, 419, pp. 191-198Prasad, N., Roscoe, S.M., Evidence of anoxic to oxic atmospheric change during 2.45-2.22Ga from lower and upper sub-Huronian paleosols, Canada (1996) Catena, 27, pp. 105-121Puchtel, I.S., Arndt, N.T., Hofmann, A.W., Petrology of mafic lavas within the Onega plateau, central Karelia: evidence for 2.0Ga plume-related continental crustal growth in the Baltic Shield (1998) Contributions to Mineralogy and Petrology, 130, pp. 134-153Retallack, G.J., Soils of the Past: An Introduction to Paleopedology (2001)Robert, F., Chaussidon, M., A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts (2006) Nature, 443 (7114), pp. 969-972Rockne, K.J., Kinetic hindrance of Fe(II) oxidation at alkaline pH and in the presence of nitrate and oxygen in a facultative wastewater stabilization pond (2007) Journal of Environmental Science and Health Part A, 42, pp. 265-275Rosing, M.T., Bird, D.K., Sleep, N.H., Bjerrum, C.J., No climate paradox under the faint Sun (2010) Nature, 464, pp. 744-747Rye, R., Holland, H.D., Paleosols and the evolution of atmospheric oxygen: a critical review (1998) American Journal of Science, 298, pp. 621-672Rye, R., Holland, H.D., Geology and geochemistry of paleosols developed on the Hekpoort basalt, Pretoria Group, South Africa (2000) American Journal of Science, 300, pp. 85-141Sak, P.B., Fisher, D.M., Gardner, T.W., Murphy, K., Brantley, S.L., Rates of weathering rind formation on Costa Rican basalt (2004) Geochimica et Cosmochimica Acta, 68, pp. 1453-1472Sak, P.B., Navarre-Sitchler, A.K., Miller, C.E., Daniel, C.C., Gaillardet, J., Buss, H.L., Lebedeva, M.I., Brantley, S.L., Controls on rind thickness on basaltic andesite clasts weathering in Guadeloupe (2010) Chemical Geology, 276, pp. 129-143Sheldon, N.D., Pedogenesis and geochemical alteration of the picture Gorge Subgroup, Columbia River Basalt, Oregon (2003) Geological Society of America Bulletin, 115 (11), pp. 1377-1387Sheldon, N.D., Precambrian paleosols and atmospheric CO2 levels (2006) Precambrian Research, 147, pp. 148-155Sleep, N.H., Hessler, A.M., Weathering of quartz as an Archean climatic indicator (2006) Earth and Planetary Science Letters, 241, pp. 594-602Stumm, W., Lee, G.F., Oxygenation of ferrous iron (1961) Industrial and Engineering Chemistry, 53, pp. 143-146Sugimori, H., Kanzaki, Y., Murakami, T., Relationships between Fe redistribution and PO2 during mineral dissolution under low O2 conditions (2012) Geochimica et Cosmochimica Acta, 84, pp. 29-46Tabor, N.J., Montañez, I.P., Zierenberg, R., Currie, B.S., Mineralogical and geochemical evolution of a basalt-hosted fossil soil (Late Triassic, Ischigualasto Formation, northwest Argentina): potential for paleoenvironmental reconstruction (2004) GSA Bulletin, 116 (9-10), pp. 1280-1293Taylor, S.R., McLennan, S.M., (1985) The Continental Crust: Its Composition and Evolution, p. 315. , Blackwell, OxfordThomas, J.E., Smart, R., Skinner, S., Kinetic factors for oxidative and non-oxidative dissolution of iron sulfides (2000) Minerals Engineering, 13 (10-11), pp. 1149-1159Utsunomia, S., Murakami, T., Nakama, M., Kasada, T., Iron oxidation state of a 2.45-Byr-old paleosol developed on mafic volcanics (2003) Geochimica et Cosmochimica Acta, 67 (2), pp. 213-221Van Kranendonk, M.J., Smithies, R.H., Hickman, A.H., Champion, D.C., Paleoarchean development of a continental nucleus: the East Pilbara Terrane of the Pilbara Craton (2007), pp. 307-337. , Western Australia. In: Condie, K.C. (Series Ed.) Developments in Precambrian Geology, vol. 15. Elsevier, pp. (Chapter 4.1)White, A.F., Brantley, S.L., The effect of time on the weathering rates of silicate minerals: why do weathering rates differ in the laboratory and field? (2003) Chemical Geology, 202, pp. 479-506Wiggering, H., Beukes, N.J., Petrography and geochemistry of a 2000-2200-Ma-old hematitic Paleo-alteration profile on Ongeluk basalt of the Transvaal supergroup, Griqualand West, South Africa Original Research Article (1990) Precambrian Research, 46 (3), pp. 241-258Yang, W., Holland, H.D., Rye, R., Evidence for low or no oxygen in the late Archean atmosphere from the ~2.76Ga Mt. Roe #2 paleosol, Western Australia: Part 3 Original Research Article (2002) Geochimica et Cosmochimica Acta, 66 (21), pp. 3707-3718Yokota, K., Kanzaki, Y., Murakami, T., Weathering model for the quantification of atmospheric oxygen evolution during the Paleoproterozoic (2013) Geochimica et Cosmochimica Acta, 117, pp. 332-347Zbinden, E.A., Holland, H.D., Feakes, C.R., Dobos, S.K., The Sturgeon Falls paleosol and the composition of the atmosphere 1.1Ga BP (1988) Precambrian Research, 42, pp. 141-163Zerkle, A.L., Claire, M.W., Domagal-Goldman, S.D., Farquhar, J., Poulton, S.W., A bistable organic-rich atmosphere on the Neoarchaean Earth (2012) Nature Geoscience, 5, pp. 359-363Zolotov, M., Mironenko, M.V., Timing of acid weathering on Mars: a kinetic-thermodynamic assessment (2007) Journal of Geophysical Research, 112, pp. E070
    corecore