11 research outputs found
An exactly solvable self-convolutive recurrence
We consider a self-convolutive recurrence whose solution is the sequence of
coefficients in the asymptotic expansion of the logarithmic derivative of the
confluent hypergeometic function . By application of the Hilbert
transform we convert this expression into an explicit, non-recursive solution
in which the th coefficient is expressed as the th moment of a
measure, and also as the trace of the th iterate of a linear operator.
Applications of these sequences, and hence of the explicit solution provided,
are found in quantum field theory as the number of Feynman diagrams of a
certain type and order, in Brownian motion theory, and in combinatorics
On the distinguishability of random quantum states
We develop two analytic lower bounds on the probability of success p of
identifying a state picked from a known ensemble of pure states: a bound based
on the pairwise inner products of the states, and a bound based on the
eigenvalues of their Gram matrix. We use the latter to lower bound the
asymptotic distinguishability of ensembles of n random quantum states in d
dimensions, where n/d approaches a constant. In particular, for almost all
ensembles of n states in n dimensions, p>0.72. An application to distinguishing
Boolean functions (the "oracle identification problem") in quantum computation
is given.Comment: 20 pages, 2 figures; v2 fixes typos and an error in an appendi
Asymmetric correlation matrices: an analysis of financial data
We analyze the spectral properties of correlation matrices between distinct
statistical systems. Such matrices are intrinsically non symmetric, and lend
themselves to extend the spectral analyses usually performed on standard
Pearson correlation matrices to the realm of complex eigenvalues. We employ
some recent random matrix theory results on the average eigenvalue density of
this type of matrices to distinguish between noise and non trivial correlation
structures, and we focus on financial data as a case study. Namely, we employ
daily prices of stocks belonging to the American and British stock exchanges,
and look for the emergence of correlations between two such markets in the
eigenvalue spectrum of their non symmetric correlation matrix. We find several
non trivial results, also when considering time-lagged correlations over short
lags, and we corroborate our findings by additionally studying the asymmetric
correlation matrix of the principal components of our datasets.Comment: Revised version; 11 pages, 13 figure
The Two-Spectra Inverse Problem for Semi-Infinite Jacobi Matrices in The Limit-Circle Case
We present a technique for reconstructing a semi-infinite Jacobi operator in
the limit circle case from the spectra of two different self-adjoint
extensions. Moreover, we give necessary and sufficient conditions for two real
sequences to be the spectra of two different self-adjoint extensions of a
Jacobi operator in the limit circle case.Comment: 26 pages. Changes in the presentation of some result