9 research outputs found
Spin-orbit coupling and crystal-field splitting in the electronic and optical properties of nitride quantum dots with a wurtzite crystal structure
We present an tight-binding model for the calculation of the
electronic and optical properties of wurtzite semiconductor quantum dots (QDs).
The tight-binding model takes into account strain, piezoelectricity, spin-orbit
coupling and crystal-field splitting. Excitonic absorption spectra are
calculated using the configuration interaction scheme. We study the electronic
and optical properties of InN/GaN QDs and their dependence on structural
properties, crystal-field splitting, and spin-orbit coupling.Comment: 9 pages, 6 figure
Theory of band gap bowing of disordered substitutional II-VI and III-V semiconductor alloys
For a wide class of technologically relevant compound III-V and II-VI
semiconductor materials AC and BC mixed crystals (alloys) of the type
A(x)B(1-x)C can be realized. As the electronic properties like the bulk band
gap vary continuously with x, any band gap in between that of the pure AC and
BC systems can be obtained by choosing the appropriate concentration x, granted
that the respective ratio is miscible and thermodynamically stable. In most
cases the band gap does not vary linearly with x, but a pronounced bowing
behavior as a function of the concentration is observed. In this paper we show
that the electronic properties of such A(x)B(1-x)C semiconductors and, in
particular, the band gap bowing can well be described and understood starting
from empirical tight binding models for the pure AC and BC systems. The
electronic properties of the A(x)B(1-x)C system can be described by choosing
the tight-binding parameters of the AC or BC system with probabilities x and
1-x, respectively. We demonstrate this by exact diagonalization of finite but
large supercells and by means of calculations within the established coherent
potential approximation (CPA). We apply this treatment to the II-VI system
Cd(x)Zn(1-x)Se, to the III-V system In(x)Ga(1-x)As and to the III-nitride
system Ga(x)Al(1-x)N.Comment: 14 pages, 10 figure
Multiband tight-binding theory of disordered ABC semiconductor quantum dots: Application to the optical properties of alloyed CdZnSe nanocrystals
Zero-dimensional nanocrystals, as obtained by chemical synthesis, offer a
broad range of applications, as their spectrum and thus their excitation gap
can be tailored by variation of their size. Additionally, nanocrystals of the
type ABC can be realized by alloying of two pure compound semiconductor
materials AC and BC, which allows for a continuous tuning of their absorption
and emission spectrum with the concentration x. We use the single-particle
energies and wave functions calculated from a multiband sp^3 empirical
tight-binding model in combination with the configuration interaction scheme to
calculate the optical properties of CdZnSe nanocrystals with a spherical shape.
In contrast to common mean-field approaches like the virtual crystal
approximation (VCA), we treat the disorder on a microscopic level by taking
into account a finite number of realizations for each size and concentration.
We then compare the results for the optical properties with recent experimental
data and calculate the optical bowing coefficient for further sizes
Stark shift and dissociation process of an ionized donor bound exciton in spherical quantum dots
The effect of an electric field on the ground state energy of an exciton bound to an ionized donor (D+, X) was studied in CdSe spherical quantum dots where quantum confinement is described by an infinitly deep potential. Calculations have been performed in the framework of the effective mass approximation using a variational method by choosing an appropriate sixty-terms wave function taking into account different interparticles correlations and symetry distorsion induced by the electric field. It appears that the Stark shift is significant even for low fields and depends strongly of spherical dot sizes. The competition between the confinement effect and the Stark effect is discussed as function of the spherical dot size and the applied electric field strength. The (D+, X) Stark shift is estimated and its behavior is discussed as a function of the dot radius and electric field strength. The electron and hole average distances have also been calculated and the role of the ionized donor in the excitonic dissociation is established