281 research outputs found

    A Simple Mode on a Highly Excited Background: Collective Strength and Damping in the Continuum

    Get PDF
    Simple states, such as isobaric analog states or giant resonances, embedded into continuum are typical for mesoscopic many-body quantum systems. Due to the coupling to compound states in the same energy range, a simple mode acquires a damping width ("internal" dynamics). When studied experimentally with the aid of various reactions, such states reveal enhanced cross sections in specific channels at corresponding resonance energies ("external" dynamics which include direct decay of a simple mode and decays of intrinsic compound states through their own channels). We consider the interplay between internal and external dynamics using a general formalism of the effective nonhermitian hamiltonian and looking at the situation both from "inside" (strength functions and spreading widths) and from "outside" (S-matrix, cross sections and delay times). The restoration of isospin purity and disappearance of the collective strength of giant resonances at high excitation energy are discussed as important particular manifestations of this complex interplay.Comment: 23 pages, LaTeX, 5 ps-figures included, to appear in PRC (Jule 1997

    "Super-radiance" and the width of exotic baryons

    Get PDF
    It is suggested that the narrow width of the recently observed resonance Θ+(1540)\Theta^{+}(1540) with strangeness S=+1S=+1 could be a result of the super-radiance mechanism of the redistribution of the widths of overlapping resonances due to their coupling through common decay channels.Comment: This is an update of the original version submitted on October 08, 2003; it includes consideration of an additional model and one new figur
    corecore