165 research outputs found
Characteristics of vertebral osteomyelitis after liver transplantation
AbstractWe performed a retrospective single-centre 1:3 case–control study to investigate the characteristics of vertebral osteomyelitis (VO) occurring in orthotopic liver transplant (OLT) recipients between 2000 and 2012. Nine cases were identified in 752 OLT recipients (1.2%), with a median time from OLT to VO of 12 weeks. In comparison with 27 VO not occurring in OLT patients (controls), VO occurring in OLT recipients was characterized by decreased levels of inflammation biomarkers (average C-reactive protein 65.1 mg·L−1 vs. 167 mg·L−1, p 0.02; average white blood cell count 4.8 × 109·L−1 vs. 12.9 × 109·L−1, p < 0.001), higher rate of fungal infections (3/9 vs. 0/27, p 0.01), lower rate of bacterial infections (3/9 vs. 25/27, p 0.001) and decreased proportion of positive blood cultures (1/9 vs. 16/27, p 0.02) despite a trend towards higher rate of multifocal infection. Microbiologic outcomes were similar between the two groups. Overall, VO in OLT patients was more difficult to diagnose as a result of altered inflammation response and specific microbial epidemiology of causal microorganisms
The Sloan Digital Sky Survey Quasar catalog : fourteenth data release
We present the data release 14 Quasar catalog (DR14Q) from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV). This catalog includes all SDSS-IV/eBOSS objects that were spectroscopically targeted as quasar candidates and that are confirmed as quasars via a new automated procedure combined with a partial visual inspection of spectra, have luminosities Mi [z = 2] < −20.5 (in a Λ CDM cosmology with H0 = 70 km s−1 Mpc−1, ΩM =0.3, and ΩΛ = 0.7), and either display at least one emission line with a full width at half maximum larger than 500 km s−1 or, if not, have interesting/complex absorption features. The catalog also includes previously spectroscopically-confirmed quasars from SDSS-I, II, and III. The catalog contains 526 356 quasars (144 046 are new discoveries since the beginning of SDSS-IV) detected over 9376 deg2 (2044 deg2 having new spectroscopic data available) with robust identification and redshift measured by a combination of principal component eigenspectra. The catalog is estimated to have about 0.5% contamination. Redshifts are provided for the Mg II emission line. The catalog identifies 21 877 broad absorption line quasars and lists their characteristics. For each object, the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03 mag. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra, covering the wavelength region 3610–10 140 Å at a spectral resolution in the range 1300 < R < 2500, can be retrieved from the SDSS Science Archiver Server.Publisher PDFPeer reviewe
Red flags for the early detection of spinal infection in back pain patients
© 2019 The Author(s). Background: Red flags are signs and symptoms that are possible indicators of serious spinal pathology. There is limited evidence or guidance on how red flags should be used in practice. Due to the lack of robust evidence for many red flags their use has been questioned. The aim was to conduct a systematic review specifically reporting on studies that evaluated the diagnostic accuracy of red flags for Spinal Infection in patients with low back pain. Methods: Searches were carried out to identify the literature from inception to March 2019. The databases searched were Medline, CINHAL Plus, Web of Science, Embase, Cochrane, Pedro, OpenGrey and Grey Literature Report. Two reviewers screened article texts, one reviewer extracted data and details of each study, a second reviewer independently checked a random sample of the data extracted. Results: Forty papers met the eligibility criteria. A total of 2224 cases of spinal infection were identified, of which 1385 (62%) were men and 773 (38%) were women mean age of 55 (± 8) years. In total there were 46 items, 23 determinants and 23 clinical features. Spinal pain (72%) and fever (55%) were the most common clinical features, Diabetes (18%) and IV drug use (9%) were the most occurring determinants. MRI was the most used radiological test and Staphylococcus aureus (27%), Mycobacterium tuberculosis (12%) were the most common microorganisms detected in cases. Conclusion: The current evidence surrounding red flags for spinal infection remains small, it was not possible to assess the diagnostic accuracy of red flags for spinal infection, as such, a descriptive review reporting the characteristics of those presenting with spinal infection was carried out. In our review, spinal infection was common in those who had conditions associated with immunosuppression. Additionally, the most frequently reported clinical feature was the classic triad of spinal pain, fever and neurological dysfunction. This is an Open Access article distributed in accordance with the Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory
We present the cosmological implications from final measurements of clustering using galaxies, quasars, and Ly α forests from the completed Sloan Digital Sky Survey (SDSS) lineage of experiments in large-scale structure. These experiments, composed of data from SDSS, SDSS-II, BOSS, and eBOSS, offer independent measurements of baryon acoustic oscillation (BAO) measurements of angular-diameter distances and Hubble distances relative to the sound horizon, r_{d}, from eight different samples and six measurements of the growth rate parameter, fσ_{8}, from redshift-space distortions (RSD). This composite sample is the most constraining of its kind and allows us to perform a comprehensive assessment of the cosmological model after two decades of dedicated spectroscopic observation. We show that the BAO data alone are able to rule out dark-energy-free models at more than eight standard deviations in an extension to the flat, Λ CDM model that allows for curvature. When combined with Planck Cosmic Microwave Background (CMB) measurements of temperature and polarization, under the same model, the BAO data provide nearly an order of magnitude improvement on curvature constraints relative to primary CMB constraints alone. Independent of distance measurements, the SDSS RSD data complement weak lensing measurements from the Dark Energy Survey (DES) in demonstrating a preference for a flat Λ CDM cosmological model when combined with Planck measurements. The combined BAO and RSD measurements indicate σ_{8} = 0.85 ± 0.03, implying a growth rate that is consistent with predictions from Planck temperature and polarization data and with General Relativity. When combining the results of SDSS BAO and RSD, Planck, Pantheon Type Ia supernovae (SNe Ia), and DES weak lensing and clustering measurements, all multiple-parameter extensions remain consistent with a
Λ CDM model. Regardless of cosmological model, the precision on each of the three parameters, Ω_{Λ}, H_{0}, and σ_{8}, remains at roughly 1%, showing changes of less than 0.6% in the central values between models. In a model that allows for free curvature and a time-evolving equation of state for dark energy, the combined samples produce a constraint Ω_{k} = −0.0022 ± 0.0022. The dark energy constraints lead to w_{0} = −0.909 ± 0.081 and w_{a} = −0.49^{+0.35}_{-0.30}, corresponding to an equation of state of w_{p} = 1.018 ± 0.032 at a pivot redshift z_{p} = 0.29 and a Dark Energy Task Force Figure of Merit of 94. The inverse distance ladder measurement under this model yields H_{0} = 68.18 ± 0.79 km s^{-1} Mpc^{-1}, remaining in tension with several direct determination methods; the BAO data allow Hubble constant estimates that are robust against the assumption of the cosmological model. In addition, the BAO data allow estimates of H_{0} that are independent of the CMB data, with similar central values and precision under a Λ CDM model. Our most constraining combination of data gives the upper limit on the sum of neutrino masses at ∑m_{v} < 0.115 eV (95% confidence). Finally, we consider the improvements in cosmology constraints over the last decade by comparing our results to a sample representative of the period 2000–2010. We compute the relative gain across the five dimensions spanned by w, Ω_{k}, ∑m_{v}, H_{0}, H_{0}, and σ_{8} and find that the SDSS BAO and RSD data reduce the total posterior volume by a factor of 40 relative to the previous generation. Adding again the Planck, DES, and Pantheon SN Ia samples leads to an overall contraction in the five-dimensional posterior volume of 3 orders of magnitude
The DESI survey validation : results from visual inspection of bright galaxies, luminous red galaxies, and emission line galaxies
Funding: TWL was supported by the Ministry of Science and Technology (MOST 111-2112-M-002-015-MY3), the Ministry of Education, Taiwan (MOE Yushan Young Scholar grant NTU-110VV007), National Taiwan University research grants (NTU CC-111L894806, NTU- 111L7318), and NSF grant AST-1911140. DMA acknowledges the Science Technology and Facilities Council (STFC) for support through grant code ST/T000244/1. This research is supported by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under Contract No. DE–AC02–05CH11231, and by the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility under the same contract; additional support for DESI is provided by the U.S. National Science Foundation, Division of Astronomical Sciences under Contract No. AST-0950945 to the NSF’s National Optical-Infrared Astronomy Research Laboratory; the Science and Technologies Facilities Council of the United Kingdom; the Gordon and Betty Moore Foundation; the Heising-Simons Foundation; the French Alternative Energies and Atomic Energy Commission (CEA); the National Council of Science and Technology of Mexico (CONACYT); the Ministry of Science and Innovation of Spain (MICINN), and by the DESI Member Institutions: https://www.desi.lbl.gov/ collaborating-institutions.The Dark Energy Spectroscopic Instrument (DESI) Survey has obtained a set of spectroscopic measurements of galaxies for validating the final survey design and target selections. To assist these tasks, we visually inspect (VI) DESI spectra of approximately 2,500 bright galaxies, 3,500 luminous red galaxies, and 10,000 emission line galaxies, to obtain robust redshift identifications. We then utilize the VI redshift information to characterize the performance of the DESI operation. Based on the VI catalogs, our results show that the final survey design yields samples of bright galaxies, luminous red galaxies, and emission line galaxies with purity greater than 99%. Moreover, we demonstrate that the precision of the redshift measurements is approximately 10 km/s for bright galaxies and emission line galaxies and approximately 40 km/s for luminous red galaxies. The average redshift accuracy is within 10 km/s for the three types of galaxies. The VI process also helps to improve the quality of the DESI data by identifying spurious spectral features introduced by the pipeline. Finally, we show examples of unexpected real astronomical objects, such as Lyman α emitters and strong lensing candidates, identified by VI. These results demonstrate the importance and utility of visually inspecting data from incoming and upcoming surveys, especially during their early operation phases.Publisher PDFPeer reviewe
- …